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Summary
In this paper we study time-inconsistent stochastic optimal control problems. We 

discuss the assumption of time-consistency of the optimal solution and its fundamental 
relation with Bellman equation. We point out consequences of time-inconsistency of 
the optimal solution and we explain the concept of Nash equilibrium which allows us 
to handle the time-inconsistency. We describe an extended Hamilton-Jacobi-Bellman 
equation which can be used to derive an equilibrium strategy in a time-inconsistent sto-
chastic optimal control problem. We give three examples of time-inconsistent dynamic 
optimization problems which can arise in insurance and finance. We present the solu-
tion for exponential utility maximization problem with wealth-dependent risk aversion.

Keywords: Bellman equation, Nash equilibrium, time-inconsistency, wealth-de-
pendent risk aversion

1. Introduction

Stochastic optimal control is now a well-developed field of study2. The key 
assumption in the study of stochastic optimal control problems is the time-con-
sistency of the optimal solution. The time-consistency provides the theoretical 
foundation for the Dynamic Programming Principle and Hamilton-Jacobi-Bell-
man equation, which are the pillars of the modern stochastic control theory.

Basic optimization problems in insurance and finance are time-consis-
tent. However, one can find a lot of arguments for changing the basic model’s 
assumptions and these changes may lead to a time-inconsistent optimization 

1 Warsaw School of Economics SGH, Collegium of Economic Analysis, Division of Proba-
bilistic Methods.

2 W. Fleming, R. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, 
New York 1975; J. Yong, X. Y. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equa-
tions, Springer-Verlag, New York 1999; B. Øksendal, A. Sulem, Applied Stochastic Control of 
Jump Diffusions, Springer-Verlag, Berlin Heidelberg 2004.
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problem. As the key example, let us consider an investor who maximizes the 
expected exponential utility from his/her terminal wealth. If the investor’s coef-
ficient of risk aversion does not change in time, then the optimization problem is 
time-consistent and it is known how to derive the optimal solution. However, if 
we assume that the coefficient of risk aversion changes in time and depends on 
the investor’s available wealth, which seems to be a more reasonable assumption 
in a dynamic asset allocation problem, then the optimization problem becomes 
time-inconsistent. The property of time-inconsistency means that the optimal 
solution and the optimal value function do not satisfy Bellman’s Principle of 
Optimality. Consequently, it is not clear how to define and derive the optimal 
strategy for the time-inconsistent optimization problem.

Björk, Ekeland, Khapko, Lazrak, Murgoci and Pirvu3 developed a theory 
for solving time-inconsistent optimization problems. They derived an extended 
version of the Hamilton-Jacobi-Bellman equation and introduced a notion of an 
optimal strategy for time-inconsistent optimization problems which was based 
on the equilibrium of a game. When solving time-inconsistent optimization prob-
lems, we should not search for optimal strategies, but we should search for sub-
game perfect Nash equilibrium strategies.

The goal of this paper is to present general ideas and intuition behind the 
key notions of time-consistency, time-inconsistency, the optimal strategy and 
equilibrium strategy in stochastic optimal control problems. We do not touch 
upon mathematical details, which can be found in the cited literature. This paper 
should be of interest to researchers in economics, insurance and finance who 
would like to investigate optimization problems. We discuss the assumption of 
time-consistency of the optimal solution and its fundamental relation with the 
Bellman equation. We point out consequences of time-inconsistency of the opti-
mal solution and we explain the concept of the Nash equilibrium, which allows us 
to handle time-inconsistency. We describe an extended Hamilton-Jacobi-Bellman 
equation which can be used to derive an equilibrium strategy in a time-incon-
sistent stochastic optimal control problem. We give three examples of time-in-
consistent dynamic optimization problems which can arise in insurance and 
finance. We present the solution to the exponential utility maximization problem 

3 I. Ekeland, A. Lazrak, Being serious about non-commitment: subgame perfect equilibrium 
in continuous time, Preprint 2006; I. Ekeland, T. Pirvu, Investment and consumption without 
commitment, “Mathematical Financial Economics” 2008, vol. 2, pp. 57–86; T. Björk, A. Mur-
goci, A theory of Markovian time-inconsistent stochastic control in discrete time, “Finance and 
Stochastics” 2014, vol. 18, pp. 545–592; T. Björk, M. Khapko, A. Murgoci, On time-inconsistent 
stochastic control in continuous time, “Finance and Stochastics” 2017, vol. 21, pp. 331–360.
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with wealth-dependent risk aversion. As far as we know, this is the first solution 
derived in an explicit form to the exponential utility maximization problem with 
wealth-dependent risk aversion.

2. Time-consistency and the Hamilton-Jacobi-Bellman equation

In this section we study classical stochastic optimal control problems and 
introduce basic notations. We explain Bellman’s Principle of Optimality and the 
key property of time-consistency of the optimal solution.

Let us consider a finite time horizon T. As usual, let Ω,F,P( )  denote a proba-
bility space with filtration F = (F

t
)

0≤t≤T
 which is the natural filtration generated by 

one-dimensional Brownian motion W := W t( ),0 ≤ t ≤ T( ). We investigate a con-
trolled stochastic process X π : X π t( ),0 ≤ t ≤ T( ),  which takes the form

 dX π t( ) = µ t, X π t( ),π t( )( )dt +σ t, X π t( )( )dW t( ),     0 ≤ t ≤ T, (2.1)

where µ  and σ  denote the drift and the volatility of the process X π , and π  
denotes the control strategy. The control strategy π  is a stochastic process which 
satisfies some integrability and measurability assumptions. We assume that the 
stochastic differential equation (2.1) has a unique strong solution X π . The pro-
cess X π  is called a state process.

Example 1. Let us consider a financial market which consists of a risk-free 
deposit D = D t( ),0 ≤ t ≤ T( )  and a risky stock S = S t( ),0 ≤ t ≤ T( ). The value of the 
risk-free deposit is constant, D t( ) =1,   0 ≤ t ≤ T , i.e. we assume that the interest 
rate is zero or we consider discounted quantities in our problem. The price of 
the risky stock is modelled with the geometric Brownian motion:

dS t( )
S t( ) = µdt +σ dW t( ),     0 ≤ t ≤ T.

Let π t( ) denote the amount of money that the investor/insurer invests at time t 
in the risky stock S. The wealth process X π  of the investor satisfies the SDE

dX π t( ) = π t( ) µdt +σ dW t( )( )     0 ≤ t ≤ T,

X 0( ) = x,
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where x > 0 denotes the initial wealth. We can see that in this example the con-
trol strategy π  is interpreted as the amount of money invested in the risky stock, 
and the controlled stochastic process X π  is interpreted as the wealth of the inve-
stor/insurer. The investor/insurer chooses the control strategy π  and controls 
its wealth X π  in order to fulfill some objective at the maturity T. We will conti-
nue this example in the sequel. n

We need to introduce the generator of the process (2.1). Let f t,x( ) denote 
a function which is continuously differentiable in t and twice continuously dif-
ferentiable in x, i.e. f ∈C1,2 0,T⎡⎣ ⎤⎦R( ). The generator L  on f is defined by

Lπ f t,x( ) = lim
h→0

E
t,x

f t + h, X π t + h( )( )⎡⎣ ⎤⎦ − f t,x( )
h

 = f
t

t,x( )+ µ t,x,π( ))fx
t,x( )+ 1

2
σ 2 t,x,π( ))fxx

t,x( ),  (2.2)

where E
t,x

⋅⎡⎣ ⎤⎦  denotes the conditional expected value E[⋅| X t( ) = x], and f
t
, f

x
, f

xx  
denote partial derivatives of f.

The classical stochastic optimal control theory deals with optimization prob-
lems of the form

 sup
π
E

0

T

∫C s, X π s( ),π s( )( )ds +G X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, (2.3)

where C and G are interpreted as intermediate and terminal utility, and X π is 
given by the SDE (2.1). The control strategy π , which is used to govern the pro-
cess X π , can be an arbitrary stochastic process. However, it is common to deal 
with Markov control strategies and consider control strategies such that the 
strategy at time t given that X t( ) = x is of the form π t,x( ) where π  is a deter-
ministic function. The deterministic function π  is called a control policy func-
tion or a decision rule. Hence, the solution to the optimization problem (2.3) is 
a function π  which tells what the strategy/decision should be given any possi-
ble value of the state process X. In the sequel, π  will denote the control strategy 
(a stochastic process) and the control policy function (a deterministic function).

In order to solve the optimization problem (2.3), we investigate the family 
of optimization problems:

 sup
π
E

t,x
t

T

∫C s, X π s( ),π s( )( )ds +G X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (2.4)
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The family (2.4) is indexed with the pair t,x( )  which describes the initial 
time t and the initial state x of the process X π  at time t. Using the Markov prop-
erty of the control strategy π  and the state process X π , we can introduce the 
objective function

 V π t,x( ) = Et,x
t

T

∫C s, X π s( ),π s( )( )ds +G X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, (2.5)

and the optimal value function

 V t,x( ) = sup
π
E

t,x
t

T

∫C s, X π s( ),π s( )( )ds +G X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (2.6)

The strategy π * for which V π *

t,x( ) = V t,x( )  is called the optimal control 
strategy.

The key property which allows us to solve the optimization problems (2.4) 
is Bellman’s Principle of Optimality. Bellman’s Principle of Optimality and the 
Dynamic Programming Principle are the main tools in the dynamic optimiza-
tion and stochastic control theory. Bellman’s Principle of Optimality says that 
the optimal policy function π *  has the property that whatever the initial state 
and the initial decision are, the remaining decisions must constitute the opti-
mal policy function with regard to the state resulting from the first decision. In 
other words, the optimal control policy function π * which solves the optimiza-
tion problem (2.4) is independent of the initial pair t,x( ) . The policy function 
π *,  which is the optimal solution for the objective (2.5) at t,x( ), is still opti-
mal when we solve the same optimization problem (2.4) at some latter point 

s, X π s( )( ). This is a very rational property and this property is called time-con-
sistency of the optimal solution.

As suggested by the principle of optimality, we can separate all future deci-
sions from the current decision. Let π * denote the optimal control strategy deter-
mined by the optimal control policy function π *. The optimal value function can 
be written in the following way:

V t,x( ) = Et,x
[

t

t+h

∫C s, X π *

s( ),π * s( )( )ds

 +
t+h

T

∫C s, X π *

s( ),π * s( )( )ds +G X π *

T( )( )].  (2.7)
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By Bellman’s Principle of Optimality, we also have

V t + h, X π t + h( )( )
 = E[

t+h

T

∫C s, X π *

s( ),π * s( )( )ds +G X π *

T( )( )|Ft+h
],  (2.8)

for any π  applied on t,t + h⎡⎣ ⎤⎦ . Combining the last two equations (2.7)–(2.8) and 
using the property of conditional expectations, we end up with the recursive 
equation for the optimal value function:

 V t,x( ) = Et,x
t

t+h

∫C s, X π *

s( ),π * s( )( )ds +V t + h, X π *

t + h( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. (2.9)

We point out that the recursive equation (2.9) can be derived since the property 
of time-consistency of the optimal solution holds and the property of conditional 
expectations can be applied. If one of these properties fails, then the recursive 
equation of the form (2.9) for the optimal value function cannot be derived.

If we were considering a discrete time model, i.e. a model in which the 
strategies were chosen at discrete times 0,h,...,t,t + h,...,T − h  and kept fixed 
in between, then the second term in (2.9), i.e. the function V t + h, X π *

t + h( )( ) , 
would depend on the strategies applied at time t + h,t + 2h,...,T − h. It should be 
intuitively clear that the optimal strategy at time t should be determined by the 
policy function which solves the following optimization problem:

 π * t,x( ) = arg  maxπ Et,x
t

t+h

∫C s, X π ,π( )ds +V t + h, X π t + h( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.          (2.10)

Looking at (2.9)–(2.10), we can conclude that the optimization problem (2.3) 
can be stated in a recursive, step-by-step form. This recursive form describes 
the relationship between the value function in one period and the value function 
in the next period. The optimization performed in each period involves maximi-
zing the sum of the period-specific intermediate utility function and the objective 
function under the optimal strategy at the next period, giving that the strategy 
is contingent on the value of the state process in the period considered and the 
optimal decisions made in the next periods. Each period’s decision is made by 
acknowledging that all future decisions will be optimally made. The procedure 
continues recursively back in time and allows deriving the optimal control stra-
tegies. This solution method is called the Dynamic Programming Principle. We 
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can see that Bellman’s Principle of Optimality and the Dynamic Programming 
Principle transform a dynamic optimization problem into a sequence of one-di-
mensional optimization problems.

We now move to our continuous-time model. If we divide (2.9) by h, let 
h→ 0 and use the generator (2.2), we can state the Hamilton-Jacobi-Bellman 
(HJB) equation:

sup
π
LπV t,x( )+C t,x,π( ){ } = 0.          t,x( )∈ 0,T⎡⎣ )R,            

 V T,x( ) = G x( ),         x ∈R.  (2.11)

Let us recall that the Hamilton-Jacobi-Bellman equation is the Bellman 
equation in continuous-time models. The optimal control strategy π *  is deter-
mined by the control policy functions which solve the optimization problems:

 π * t,x( ) = arg  maxπ C t,x,π( )+LπV t,x( ){ }. (2.12)

The logic behind the optimization process when we investigate conti nuous-
time models is analogous as in discrete-time models.

Example 2. We continue Example 1. The exponential utility maximization 
problem is one of the dynamic investment problems often studied in financial 
and insurance mathematics. The goal is to find the investment strategy which 
leads to the maximal expected exponential utility from the terminal wealth, i.e. 
the goal is to solve the optimization problem

sup
π
E −e−γ Xπ T( )⎡
⎣

⎤
⎦ ,

where γ  denotes the risk aversion coefficient of the investor. Using (2.11), the 
HJB equation for this optimization problem takes the form

V
t

t,x( )+ sup
π

πµV
x

t,x( )+ 1
2
π 2σ 2V

xx
t,x( )⎧

⎨
⎩

⎫
⎬
⎭
= 0,        t,x( )∈ 0,T⎡⎣ )R,

V T,x( ) = −e−γ x ,     x ∈R.

We can try to substitute V t,x( ) = −eh t( )x+k t( ) . By doing calculations, we can 
conclude that the optimal investment strategy is π * t( ) = µ

γσ 2
. n
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3. Time-inconsistency and examples in insurance and finance

In this section we explain what time-inconsistency of the optimal solution 
means. We give three important examples of dynamic optimization problems 
in insurance and finance which lead to time-inconsistent solutions.

As discussed in the previous section, time-consistency of the optimal solu-
tion is a natural property. However, this property does not always hold. We will 
give specific examples of time-inconsistent optimization problems from insu-
rance and finance in the sequel. First, let us comment on the general idea behind 
the time-inconsistency. Let us investigate the family of optimization problems 
of the form:

 sup
π
E

t,x
t

T

∫C t,x,s, X π s( ),π s( )( )ds +G t,x, X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (3.1)

Compared to the objective (2.4), the utilities C and G depend now on the ini-
tial pair t,x( ) which describes the point in time t and the value of the state pro-
cess at time t. It turns out that Bellman’s Principle of Optimality does not hold 
for the family of optimization problems (3.1). We can fix and value the utilities 
in the objective (3.1) at a pre-defined pair t,x( ) and use the solution methods 
described in the previous section. The optimal control policy function π * which 
characterizes the optimal solution (the optimal decision rule) for the problem (3.1) 
for a pre-defined pair t,x( )  depends now on this pair t,x( ). The optimal solu-
tion is said to be time-inconsistent. Time-inconsistency of the optimal solution 
means that the policy function π *  which is the optimal solution to the optimi-
zation problem for the initial pair t,x( )  is no longer optimal at some later point 

s, X π s( )( ) . In other words, time-inconsistency of the optimal solution means 
that the restriction of the policy function π * optimal for the pair t,x( ) on a later 
time interval s,T⎡⎣ ⎤⎦  does not coincide with the policy function π * optimal for 
the pair s, X π s( )( ). The optimization process becomes less intuitive. The con-
troller believes that he/she should follow an optimal decision rule which he/she 
has derived at time t when the state process is equal to x, but after time t his/her 
decision rule is no longer optimal and he/she should switch to a different decision 
rule. Note that when we solve the optimization problem (3.1) by applying the 
Dynamic Programming Principle and we search for the optimal control policy 
function, we assume that the controller fixes the policy function on t,T⎡⎣ ⎤⎦  and 
follows this policy function on t,T⎡⎣ ⎤⎦ . Changes in the control policy function are 
not allowed in the classical setting of dynamic optimization problems. It should 
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be clear that time-inconsistency of the optimal solution has far-reaching conse-
quences since it contradicts the classical notion of optimality and undermines 
the classical reasoning behind dynamic optimization.

When we consider optimization problems of the form (3.1) Bellman’s Prin-
ciple of Optimality breaks down and the Bellman equation cannot be derived. 
Let us investigate what happens if we try to repeat the same steps as in the 
previous section and try to derive the recursive equation for the optimal value 
function. Let π * denote the optimal control strategy determined by the optimal 
control policy function. The optimal control policy function is determined by 
solving (3.1) for t,x( )  and it depends on the initial pair t,x( ). We use the nota-
tion π t,x

* . We define the optimal value function

V t,x( ) = Et,x
t

T

∫C t,x,s, X π t ,x
*

s( ),π t,x
* s( )( )ds +G t,x, X π t ,x

*

T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

and we still have the relation

V t,x( ) = Et,x
[

t

t+h

∫C t,x,s, X π t ,x
*

s( ),π t,x
* s( )( )ds

+
t+h

T

∫C t,x,s, X π t ,x
*

s( ),π t,x
* s( )( )ds +G t,x, X π t ,x

*

T( )( )].
However, this time

V t + h, X π t + h( )( )
= E[

t+h

T

∫C t + h, X π t + h( ),s, X
π

t+h,Xπ t+h( )
*

s( ),π t+h,Xπ t+h( )
* s( )⎛

⎝⎜
⎞
⎠⎟

ds

       +G t + h, X π t + h( ), X
π

t+h,Xπ t+h( )
*

T( )⎛
⎝⎜

⎞
⎠⎟
|F

t+h
]

≠ E[
t+h

T

∫C t,x,s, X π t ,x
*

s( ),π t,x
* s( )( )ds +G t,x, X π t ,x

*

T( )( )|Ft+h
].

We can conclude that the time-consistency of the optimal solution fails when 
the utilities C and G in the objective (3.1) change as time t goes on or the state 
process X π  changes its value. The dependence of the intermediate and terminal 
utility on the initial pair t,x( ) , which describes the point in time t and the value 
of the state process at time t, is not a theoretical sophistication. We now pre sent 
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two examples from finance and insurance in which we give motivation why we 
would like to consider time-dependent and state-dependent utility functions 
in optimization problems.

Problem 1. In Example 1 we consider an investor with constant risk aver-
sion coefficient γ  who chooses the investment strategy to maximize the expected 
exponential utility from the terminal wealth. The optimal control strategy/the 
optimal control policy function takes the form π * t( ) = µ

γ σ 2
.

The assumption that the risk aversion of the investor remains constant over 
the whole investment period 0,T⎡⎣ ⎤⎦  might be questioned. There are a lot of 
arguments for assuming a time-varying risk aversion. In a bull market inves-
tors are willing to take more risk, which should be modeled with a lower risk 
aversion coefficient, whereas in a bear market investors are willing to take less 
risk, which should be modeled with a higher risk aversion coefficient. Hence, 
the risk aversion coefficient depending on the state of economy should be used 
in dynamic portfolio selection problems4. There are also strong empirical evi-
dences that the degree of risk aversion depends on prior gains and losses, on 
wealth in general. After a gain on a prior gamble people are more risk seeking 
than usual, while after a prior loss they become more risk averse. The observa-
tion that the risk aversion goes down after a prior gain is called the house money 
effect, and it reflects gamblers’ increased willingness to bet when ahead5. Con-
sequently, we should investigate a portfolio selection problem for an investor 
with the risk aversion coefficient depending on the investor’s current wealth. 
We should investigate the optimization problems:

 sup
π
E

t,x
−e−γ x( )Xπ T( )⎡
⎣

⎤
⎦ ,  (3.2)

where γ :R! 0,∞( ) is a function of wealth x. Since the optimal control strategy/
the optimal control policy function for the investor who maximizes the expected 
exponential utility of the terminal wealth depends on the risk aversion coefficient, 
we can easily see that the optimal investment strategy for the investor with risk 
aversion γ x( ) , who has at time t the available wealth in the amount of x, will 

4 S. Gordon, P. St-Amour, A preference regime model of bull and bear markets, “American 
Economic Review” 2000, vol. 90, pp. 1019–1033; M. Kwak, T. Pirvu, H. Zhang, A multipe-
riod equilibrium pricing model, “Journal of Applied Mathematics” 2014, vol. 14, pp. 1–14.

5 R. Thaler, E. Johnson, Gambling with the house money and trying to break even: the ef-
fects of prior outcomes on risky choice, “Management Science” 1990, vol. 36, pp. 643–660.



239Time-inconsistent stochastic optimal control problems in insurance and finance

no longer be optimal when the wealth process changes its value at some later 
point s > t  and the investors’ risk aversion becomes γ X π s( )( ).

We remark that Delong, Dong and Sircar6 study the exponential utility maxi-
mization problem for an investor with wealth-dependent risk aversion. We also 
study the optimization problem (3.2) in Example 4 and we present the solution 
in an explicit form for a specific case. n

Problem 2. In finance and insurance cash flows are usually discounted with 
exponential discounting functions. In the classical setting with exponential dis-
counting functions we deal with the optimization problems:

 sup
π
E

t,x
t

T

∫e−ρ s−t( )C X π s( ),π s( )( )ds + e−ρ T−t( )G X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

which are equivalent to the optimization problems:

  sup
π
E

t,x
t

T

∫e−ρsC X π s( ),π s( )( )ds + e−ρTG X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. (3.3)

We can notice that the discounted utilities in (3.3) do not depend on the ini-
tial t, hence the optimal solution π * to (3.3) is time-consistent.

When we investigate optimization problems with exponential discounting 
functions, we in fact assume that the investor assigns the same discount factor 
(the same weighting factor) at time t

1  and time t
2
> t

1
 to value the cash flow at 

time t
3
> t

2
. Consequently, the decision rules made at time t remain optimal at 

later time s > t . However, experimental studies show that our decisions may 
change as the time passes on. It is well-known that people prefer two oranges 
in 21 days to one orange in 20 days, but they also prefer one orange now to two 
oranges tomorrow. Such a feature is called the common difference effect and 
it cannot be modelled with exponential discounting functions. In the economic 
literature we can find strong evidences that people discount the future income 
with non-constant rates of time preferences and the real-life rates of time prefe-
rence tend to decline in time. In other words, people’s valuation tends to decrease 

6 Y. Dong, R. Sircar, Time-inconsistent portfolio investment problems, “Stochastic Analysis 
and Applications” 2014, vol. 100, pp. 239–281; Ł. Delong, Optimal investment for insurance 
company with exponential utility and wealth-dependent risk aversion coefficient, Preprint 2017.
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rapidly for short period delays and less rapidly for longer period delays7. Such 
a feature cannot be described by exponential discounting, but it can be described 
by hyperbolic discounting.

Let us use a general discounting function φ  and consider the optimization 
problems:

sup
π
E

t,x
t

T

∫φ s − t( )C s, X π s( ),π s( )( )ds +φ T − t( )F X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

The dependence of the discounted utilities on time t cannot be removed and 
we end up with time-inconsistent optimization problems.

We point out that Alia, Chighoub, Ekeland, Khelfallah, Lazrak, Marin-Solano, 
Mbodij, Navas, Pirvu and Vives8 consider investment and consumption prob-
lems for agents with general discounting functions. n

Clearly, time-inconsistency of the optimal solution may arise in many other 
cases, not just when we deal with time-varying utilities. In the previous section, 
when deriving (2.9), we point out that we also need the property of conditional 
expectations to derive the recursive equation for the optimal value function. Let 
us consider the family of optimization problems of the form:

sup
π
E

t,x
t

T

∫C s, X π s( ),π s( )( )ds + F X π T( )( )+G E
t,x

X π T( )⎡⎣ ⎤⎦( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (3.4)

The term G in the objective (3.4) is a non-linear function of the expected 
value of the controlled process at the terminal time T. The Dynamic Program-
ming Principle and the time-consistency of the optimal solution fail simply due 
to the fact that the property of conditional expectation does not hold. Please 
note that we have the inequality

7 G. Loewenstein, D. Prelec, Anomalies in intertemporal choices: evidence and an interpre-
tation, “The Quarterly Journal of Economics” 1992, vol. 107, pp. 573–597; E. G. J. Luttmer, 
T. Mariotti, Subjective discounting in an exchange economy, “Journal of Political Economy” 
2003, vol. 111, pp. 959–989.

8 I. Ekeland, A. Lazrak, op.cit.; I. Ekeland, T. Pirvu, op.cit.; I. Ekeland, O. Mbodji, T. Pirvu, 
Time-consistent portfolio management, “SIAM Journal of Financial Mathematics” 2012, vol. 3, 
pp. 1–32; I. Alia, F. Chighoub, N. Khelfallah, J. Vives, Time-consistent investment and consump-
tion strategies under a general discount function, Preprint 2017; J. Marin-Solano, J. Navas, 
Consumption and portfolio rules for time-inconsistent investors, “European Journal of Opera-
tional Research” 2010, vol. 201, pp. 860–872.
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E
t,x

[G(E[ X π T( )|Ft+h
])] ≠ G E

t,x
X π T( )⎡⎣ ⎤⎦( ),

which prevents us from repeating the reasoning which leads us to (2.9). We also 
have optimization problems of the form (3.4) in finance and insurance.

Problem 3. It is well-known that variance is a time-inconsistent risk measure 
and does not satisfy the property of conditional expectations. At the same time 
mean-variance optimization is one of the key optimization problems considered 
in finance and insurance. If we want to use a mean-variance risk measure 
in dynamic portfolio selection, we have to study the optimization problems:

 sup
π

{E
t,x

X π T( )⎡⎣ ⎤⎦ − γ (E
t,x

[| X π T( )|2 ]− E
t,x

X π T( )⎡⎣ ⎤⎦)
2( )}, (3.5)

where the last term is a non-linear function of the expected wealth. The objec-
tive (3.5) fits (3.4). Let us note that in real-life applications we should consider 
the risk aversion coefficient γ  which depends on wealth x. A wealth-dependent 
risk aversion γ x( ) would introduce the second source of time-inconsistency 
to our optimization problem, which we discuss in Problem 1.

Let us remark that Björk, Hu, Jin, Kronborg, Li, Murgoci, Steffensen, Zeng 
and Zhou9 study mean-variance optimization problems. n

4.  Equilibrium strategies and the extended Hamilton-Jacobi- 
-Bellman equation

We now focus on time-inconsistent optimization problems of the form (3.1), 
i.e. in this section we study the optimization problems:

 sup
π
E

t,x
t

T

∫C t,x,s, X π s( ),π s( )( )ds +G t,x, X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (4.1)

9 Y. Hu, H. Jin, X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, “SIAM 
Journal on Control and Optimization” 2012, vol. 50, pp. 1548–1572; Y. Zeng, Z. Li, Optimal 
time-consistent investment and reinsurance policies for mean-variance insurers, “Insurance: 
Mathematics and Economics” 2011, vol. 49, pp. 145–154; T. Björk, A. Murgoci, X. Y. Zhou, 
op.cit.; M. Kronborg, M. Steffensen, Inconsistent investment and consumption problems, “Ap-
plied Mathematics and Optimization” 2015, vol. 71, pp. 473–515.
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We know that Bellman’s Principle of Optimality does not hold for (4.1) and 
we cannot use the arguments from Section 2 to define the optimal solution 
in the classical sense. In this section we explain how to define a solution to the 
time-inconsistent dynamic optimization problem (4.1).

We have two simple approaches to handle the time-inconsistency. Let π t,x
*  

denote the optimal control policy function found by solving (4.1) for the ini-
tial pair π t,x

* . The policy π t,x
*  is found by solving the HJB equation (2.11) with 

the utilities C  and G  valued and fixed at t,x( ) , i.e. π t,x
*  is found by solving the 

HJB equation:

sup
π
LπV t,x s,y( )+C t,x,s,y,π( ){ } = 0,        s,y( )∈ t,T⎡⎣ )R,            

 V t,x T,y( ) = G t,x,y( ),       y ∈R.   (4.2)

We next define

π
t,x
* s,y( ) = arg  maxπ L

πV t,x s,y( )+C t,x,s,y,π( ){ },      s,y( )∈ t,T⎡⎣ )R.

We can use two types of solutions:
• Pre-commitment solution: Use π

0,x0

* t,x( ) at time t given that X t( ) = x, where 
x

0 is the initial value of the state process X at time 0,
• Naive solution: Use π

t,x
* t,x( ) at time t given that X t( ) = x.

Example 3. We consider Problem 1 and the exponential utility maximization 
problem for an investor with wealth-dependent risk aversion. We want to solve 
the optimization problems:

sup
π
E

t,x
−e−γ x( )Xπ T( )⎡
⎣

⎤
⎦.

Using the results from Example 2 we can conclude that the pre-commitment 
solution is π * t( ) = µ

γ x
0( )σ 2

, where x
0  is the initial wealth of the investor at 

time 0, and the naive solution is π * t( ) = µ
γ X π *

t( )( )σ 2
. n

The advantage of the pre-commitment and naive solution is that they are 
derived by solving classical HJB equations and are based on the notion of opti-
mality described in Section 2. The disadvantage of the pre-commitment and 
naive solution is that they ignore the key feature of the dynamic optimization 
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problem (4.1) which is the time-varying utilities C and G. When we use the 
pre-commitment solution we assume that the controller who solves the dynamic 
optimization problem (4.1) at time t = 0 can force the future controllers to use 
his/her strategy, even though this strategy will not be the optimal strategy for 
the future controllers with different utilities. The naive solution tries to glue the 
strategies which are optimal for all controllers. However, the naive solution 
to the optimization problem (4.1) for the initial pair t,x( ) is derived under the 
assumption that all future controllers will use the same utilities C t,x,.,.( ) and 
G t,x,.( )  as the controller with wealth x at time t who searches for the optimal 
decision rule at time t. Hence, future changes in the utilities are still not mo- 
delled. Clearly, we would like to find a solution to the dynamic optimization 
problem (4.1) which takes into account that the utilities C and G are time-vary-
ing and the investor’s preferences are changing. In other words, we would like 
to find the optimal decision rule for the controller with utilities C t,x,.,.( ) and 
G t,x,.( ),  given the knowledge that the future controllers may have different uti-
lities, depending on the future wealth and time, and may apply different decision 
rules in accordance with their utilities. Such a solution is called a sophisticated 
solution and it requires a different concept of optimality.

We take a game-theoretic approach. Let us consider a game played by 
a continuum of agents during the time interval 0,T⎡⎣ ⎤⎦ . The agent at time t 
only chooses the strategy at time t. When the agents’ utilities are constant, the 
future agents will solve the remaining part of the optimization problem faced 
by the agent at time t. However, when the agents’ utilities are time-varying, 
the future agents will not solve the remaining part of the optimization problem 
faced by the agent at time t since the objective function changes constantly. 
Indeed, the agent who has the wealth in the amount of x at time t aims at max-
imizing the objective:

    E
t,x

t

T

∫C t,x,s, X π s( ),π s( )( )ds +G t,x, X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (4.3)

The objective changes since utilities C and G change with time and available 
wealth. Consequently, the agents face different optimization problems. In this 
framework of a game played by a continuum of agents, the reward to the agent 
at time t, i.e. the value of the objective function (4.3), depends on the strategy 
chosen by himself/herself and the strategies chosen by all future agents. Hence, 
the agent at time t plays with the other agent who will make decisions after 
time t. The question is what should the agent at time t do, taking into account 
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the decision-making of the future agents? If the agent at time t follows the naive 
approach and chooses the best strategy according to his/her preferences (i.e. he/
she solves the classical optimization problem with the fixed utilities C t,x,.,.( )  
and G t,x,.( ) by applying Bellman’s Principle of Optimality and the Dynamic 
Programming Principle), then his/her optimal strategy will not be adopted by 
the future agents who will have different utilities, will solve different optimiza-
tion problems and will apply different optimal strategies. Consequently, the true 
reward to the agent at time t will be lower than the reward resulting from his/
her naive optimization process. It seems reasonable to assume that the agent at 
time t should sacrifice the short-term benefit to gain in the long-term. We look 
for a strategy in the sub-game perfect Nash equilibrium.

In the game theory, the Nash equilibrium is a solution concept of a non-co-
operative game involving two or more players in which each player knows 
the equilibrium strategies of the other players, and the player does not bene-
fit by changing only his/her own strategy. If each player has chosen a strategy 
and no player can improve his/her reward by changing the strategy while the 
other players keep their strategies unchanged, then the current set of strategies 
constitutes the Nash equilibrium. A sub-game perfect Nash equilibrium is an 
improved version of the Nash equilibrium which eliminates non-rational deci-
sions in sequential games such as we have here in the time period 0,T⎡⎣ ⎤⎦ .

As before, let V π  denote the objective function/the reward under a control 
strategy π , i.e.

V π t,x( ) = Et,x
t

T

∫C t,x,s, X π s( ),π s( )( )ds +G t,x, X π T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

In a discrete time model, where the strategies are chosen at discrete times 
0,h,...,t,t + h,...,T − h  and kept fixed in between, the equilibrium strategy is well 
understood. It is known that the strategy in the Nash equilibrium is the best 
response to all other strategies in that equilibrium. Hence, the equilibrium stra-
tegy can be derived with the procedure:
• Let the agent at time T − h optimize the objective functional V π T − h,x( ) 

over π
T−h

 for all x,
• Let the agent at time T − 2h optimize the objective functional V π T − 2,x( ) over 

π
T−2

 for all x, given the knowledge that the agent at time T − h will use πT−1
* ,

• Proceed recursively by induction.
Let us remark that this sequential procedure is similar to the procedure 

described in Section 2, when we derive a recursive equation for the value 
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function (2.9) and a step-by-step procedure for finding the optimal strategies. 
However, for a time-inconsistent optimization problem we do not have a simple 
relationship between the value function in one period and the value function 
in the next period. Yong10 studied a multi-person game in a discrete time is stu-
died and established a step-by-step procedure for finding the optimal strategies 
for a time-inconsistent problem.

We can formalize the definition of an equilibrium strategy in a discrete-time 
model. Let us recall that a strategy is a Nash equilibrium strategy if no agent 
can do better by unilaterally changing his/her strategy (knowning the strategies 
of the other agents).

Definition 4.1. Let us consider a strategy π * . Choose an arbitrary point 
t,x( )∈ 0,h,..,T − h{ }R  and any strategy π . We define a new strategy

πδ s,y( ) = π y( ),     s = t,

π * s,y( ),     s = t + h,...,T − h,     y ∈R

⎧
⎨
⎪

⎩⎪
If

sup
π

V πδ t,x( ) = V π *

t,x( ),

then π * is called an equilibrium strategy and V π *

t,x( ) is called the equilibrium 
value function corresponding to the equilibrium strategy π *.

Unfortunately, we cannot apply the above definition in continuous-time mod-
els. The reason is that in a continuous-time model a change in the control strategy 
at time t does not affect the controlled process (2.1) and the objective function 
(4.3). The definition of an equilibrium strategy in a continuous-time model is a bit 
more theoretical, but the main idea behind the equilibrium stra tegy remains.

Definition 4.2. Let us consider a strategy π * . Choose an arbitrary point 
t,x( )∈ 0,T⎡⎣ )R  and any strategy π . We define a new strategy

πδ s,y( ) = π s,y( ),     t ≤ s ≤ t +δ ,

π * s,y( ),     t +δ < s ≤ T,     y ∈R.

⎧
⎨
⎪

⎩⎪

If

lim  inf   δ→0
  

V π *

t,x, p( )−V πδ t,x, p( )
δ

≥ 0,

10 J. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, 
“American Institute of Mathematical Sciences” 2012, vol. 2, pp. 271–329.
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then π *  is called an equilibrium strategy and V π *

t,x( ) is called the equilibrium 
value function corresponding to the equilibrium strategy π *.

We would like to remark that we define an equilibrium strategy in the class 
of closed-loops control strategies. It is also possible to define an equilibrium 
strategy in the class of open-loops control strategies11. In general, the equilib-
rium strategy in the class of closed-loops control strategies is different from the 
equilibrium strategy in the class of open-loops control strategies12.

At the beginning of this section we introduce pre-commitment and naive 
solutions. The solution in the Nash equilibrium is called a sophisticated solution. 
Let us point out that all three types of solutions, pre-commitment, naive and 
sophisticated, are different in general. For a comparison of these three types of 
solutions we refer to the paper by Marin-Solano and Navas13, who investigate 
optimal consumption and investment problems.

Interestingly, we can still establish a recursive equation for the objective 
function under the equilibrium strategy. Consequently, we can derive a version 
of the Hamilton-Jacobi-Bellman equation which characterizes the equilibrium 
strategy and the equilibrium value function. As expected, the HJB equation for 
the equilibrium value function for a time-inconsistent optimization problem is 
much complicated than the HJB equation for the optimal value function for 
a time-consistent optimization problem. First, let us present the idea behind the 
HJB equation for the equilibrium value function. For simplicity, we consider 
the optimization problem (4.1) without the intermediate utility C and with the 
terminal utility G depending only on x. Our goal is to solve

 sup
π
E

t,x
G x, X π T( )( )⎡⎣ ⎤⎦.  (4.4)

Let π *  denote an equilibrium strategy and V denote the equilibrium value 
function, i.e. V t,x( ) = V π *

t,x( ) . We can derive the following recursion:

V t,x( ) = Et,x
G x, X π *

T( )( )⎡⎣ ⎤⎦

= E
t,x

[V t + h, X π *

t + h( )( )
− W t, X π *

t + h( ), X π *

t + h( )( )− W t, X π *

t + h( ),x( )( )],       (4.5)

11 Y. Hu, H. Jin, X. Y. Zhou, op.cit.
12 Ibidem; I. Alia, F. Chighoub, N. Khelfallah, Vives J., op.cit.
13 J. Marin-Solano, J. Navas, op.cit.
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where we introduce the auxiliary value function:

 W t,x,y( ) = Et,x
[G y, X π *

T( )( ⎤⎦.  (4.6)

Function W gives the objective function for the optimization problem (4.4) 
under the equilibrium strategy with utility G depending on an auxiliary para-
meter y. When we compare the recursion (2.9) for the optimal value function 
with the recursion (4.5) for the equilibrium value function, we can see that we 
now have one additional term W t, X π *

t + h( ), X π *

t + h( )( )− W t, X π *

t + h( ),x( ) which 
describes the change in the equilibrium value function resulting from changes 
in the preferences.

If we divide the equation (4.5) by h and let h→ 0, we end up with a so-called 
extended Hamilton-Jacobi-Bellman equation:

sup
π
LπV t,x( )− MπW t,x,x( )−LπW t,x,x( )( ){ } = 0,    t,x( )∈ 0,T⎡⎣ )R,

 V T,x( ) = G x,x( ),             x ∈R,  (4.7)

Lπ
*

W t,x,y( ) = 0,             t,x( )∈ 0,T⎡⎣ )R,  y ∈R,

 W T,x,y( ) = G y,x( ),       x ∈R,  y ∈R,  (4.8)

where

Mπ f t,x,y( ) = Lπ f t,x,y( )
                          +µ t,x,π( ) fy

t,x,y( )+ 1
2
σ 2 t,x,π( ) fyy

t,x,y( )
                          +σ 2 t,x,π( ) fxy

t,x,y( ).

The term MπW t,x,x( )  in (4.7) should be understood as MπW t,x,y( )|y=x
, 

and generator Lπ  is applied on W by treating the last variable as fixed, see (2.2) 
for the definition of Lπ . The equation (4.8) follows from Feynman-Kac formula 
applied to the auxiliary value function (4.6).

We now consider the general optimization problem (4.1). We present the 
verification theorem and the extended HJB equation14.

14 T. Björk, A. Murgoci, op.cit.
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Theorem 4.1. Let operator L  be defined in (2.2) and let operator M  be defined as

Mπ f t,x,r,y( ) = Lπ f t,x,r,y( )
+f

r
t,x,r,y( )+ µ t,x,π( ) fy

t,x,r,y( )+ 1
2
σ 2 t,x,π( ) fyy

t,x,r,y( )
+σ 2 t,x,π( ) fxy

t,x,r,y( ).

The operators Lπ  and Mπ  act on f ∈C1,2,1,2 0,T ×R ×⎤⎦ ⎡⎣0,T⎡⎣ ⎤⎦ ×R( ). Assume 
there exist functions V ∈C1,2 0,T⎡⎣ ⎤⎦ ×R( ),W ∈C1,2,1,2 0,T ×R ×⎤⎦ ⎡⎣0,T⎡⎣ ⎤⎦ ×R( ),  U ∈C1,2,1,2,0 0,T ×R ×⎤⎦ ⎡⎣0,T ×R ×⎤⎦ ⎡⎣0,T⎡⎣ ⎤⎦( )

V ∈C1,2 0,T⎡⎣ ⎤⎦ ×R( ),W ∈C1,2,1,2 0,T ×R ×⎤⎦ ⎡⎣0,T⎡⎣ ⎤⎦ ×R( ),  U ∈C1,2,1,2,0 0,T ×R ×⎤⎦ ⎡⎣0,T ×R ×⎤⎦ ⎡⎣0,T⎡⎣ ⎤⎦( ) and a strategy π *  which solve the sys-
tem of HJB equations:

sup
π
LπV t,x( )+C t,x,t,x,π( )− MπW t,x,t,x( )−LπW t,x,t,x( )( ){ }

  −
t

T

∫ MπU t,x,t,x,s( )−LπU t,x,t,x,s( )( )ds
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0,        t,x( )∈ 0,T⎡⎣ )×R,

 V T,x( ) = G T,x,x( ),     x ∈R,  (4.9)

Lπ
*

W t,x,r,y( ) = 0,      t,x( )∈ 0,T⎡⎣ )×R,

 W T,x,r,y( ) = G r,y,x( ),     x ∈R,  (4.10)

Lπ
*

U t,x,r,y,s( ) = 0,      t,x( )∈ 0,s⎡⎣ )×R,

        U s,x,r,y,s( ) = C r,y,s,x,π * s,x( )( ),     x ∈R,  (4.11)

for all r,y( )∈ 0,T⎡⎣ ⎤⎦R  and s ∈ 0,T⎡⎣ ⎤⎦ . The strategy π *  is an equilibrium strategy 
for the optimization problem (4.1) and V t,x( ) = V π *

t,x( ) is the equilibrium value 
function corresponding to  the equilibrium strategy π * . Moreover, V t,x( ) = W t,x,t,x( )+

t

T

∫U t,x,t,x,s( )ds

V t,x( ) = W t,x,t,x( )+
t

T

∫U t,x,t,x,s( )ds .

Let us remark that the operators in (4.9)–(4.11) should be understood as 
in (4.7). From Theorem 4.1 we can deduce probabilistic representations of the 
unknown functions. By the Feynman-Kac formula we have:

V t,x( ) = Et,x
t

T

∫C t,x,s, X π *

s( ),π * s, X π *

s( )( )( )ds +G t,x, X π *

T( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,
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      W t,x,r,y( ) = Et,x
G r,y, X π *

T( )( )⎡⎣ ⎤⎦ ,

     U t,x,r,y,s( ) = Et,x
C r,y,s, X π *

s( ),π * s, X π *

s( )( )( )ds⎡⎣ ⎤⎦.

The extended HJB equation (4.9)–(4.11) is a system of three equations. The 
equilibrium strategy is derived from the first equation (4.9) which can be solved 
if functions W and U are known. Functions W and U are characterized with the 
equations (4.10)–(4.11) which can be solved if the equilibrium strategy is found. 
We can look at the system of equations (4.9)–(4.11) as if it was a fixed-point equa-
tion for the equilibrium strategy. We can solve the system in the following way:
• Choose an arbitrary strategy π *,1,
• Solve the equations (4.10)–(4.11) and find W and U,
• Solve the equation (4.9) with the functions W and U from the previous step 

and find a new strategy π *,2

• Iterate the procedure until convergence for the sequence (π *,k )
k=1,2,... is reached.

Example 4. We consider Problem 1. We deal with the optimization prob-
lem (4.4) with G y,x( ) = −e−γ y( )x. From (4.7)–(4.8) and Theorem 4.1 we can con-
clude that the equilibrium strategy and the equilibrium value function are 
characterized with the HJB equations:

sup
π

V
t

t,x( )+ πµV
x

t,x( )+ 1
2
π 2σ 2V

xx
t,x( )− πµW

y
t,x,x( ){ }

− 1
2
π 2σ 2W

yy
t,x,x( )− π 2σ 2W

xy
t,x,x( ){ } = 0,      t,x( )∈ 0,T⎡⎣ )×R,

 V T,x( ) = −e−γ x( )x ,     x ∈R,  (4.12)

W
t

t,x,y( )+ π * t,x( )µW
x

t,x,y( )

       + 1
2

(π * t,x( ))2σ 2W
xx

t,x,y( ) = 0,      t,x( )∈ 0,T⎡⎣ )×R,  y ∈R,

 W T,x,y( ) = −e−γ y( )x ,     x ∈R,  y ∈R.  (4.13)

Let us assume that T =1,µ = 0.5,σ = 0.1  and γ x( ) = 0.3+ 0.2Φ − x −115( )( ) , 
where Φ  denotes the standard normal distribution function. The risk aversion 
as a function of wealth is presented in Figure 1. The higher the wealth, the lower 
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the coefficient of risk aversion. We solve the HJB equations (4.12)–(4.13) by 
using the fixed point procedure and the implicit difference scheme. The equi-
librium strategy and the naive strategy are presented in Figure 2. Let us recall 
that the naive strategy is given by π t,x( ) = µ

σ 2γ x( ) , see Example 3.

Figure 1. The coefficient of risk aversion as a function of wealth
Source: own elaboration

Figure 2.  The equilibrium strategy and the naive strategy (the amounts of money 
invested in the risky stock)

Source: own elaboration
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The equilibrium investment strategy is similar in its shape (as a function of 
wealth) to the naive investment strategy but the equilibrium investment strategy 
does not coincide with the naive investment strategy, see Figure 2. As expected, 
for both the equilibrium strategy and the naive strategy: the higher the wealth, 
the higher the amount of money invested in the risky stock (since the risk aver-
sion decreases as the wealth increases). However, the equilibrium investment 
strategy increases with wealth more slowly than the naive investment strategy. 
The amount of money invested in the risky stock given by the equilibrium stra-
tegy is lower than the amount of money given by the naive strategy, especially for 
initial times t, and this discrepancy decreases as time t approaches maturity T, 
see Figure 2. This observation agrees with intuition. If the available wealth is 
high, then the naive solution tells us to invest a high amount of money in the 
risky stock since the risk aversion is low. However, the naive solution of the opti-
mization problem assumes that all future investors will have low coefficients 
of risk aversion or that the investor at time t can commit all future investors 
to apply his/her strategy. The naive solution does not take into account that the 
wealth may decrease in the future, the coefficient of risk aversion may increase 
and the future investors may prefer to invest lower amounts of money in the 
risky stock. Consequently, the strategy chosen by the naive agent at time t will 
not be adopted by the future agents. The equilibrium strategy at time t takes into 
account investment decisions preferred by the future investors who may have 
different risk preferences and may opt for lower allocations in the risky stock. 
The sophisticated solution of the optimization problem tells us to invest less 
money in the risky stock compared to the naive solution. As time t approaches 
maturity T, the probability that the wealth decreases before maturity and the 
future investors will switch to lower allocations in the risk stock becomes lower. 
Hence, the investor close to maturity, who follows the sophisticated solution, 
can invest higher amounts of money in the risky stock and his/her investment 
strategy becomes closer to the naive strategy.

5. Conclusion

In this paper we have studied time-inconsistent stochastic optimal control 
problems. We have discussed the concepts of time-consistency, time-inconsis-
tency, optimal strategy, Nash equilibrium strategy and extended Hamilton-Jaco-
bi-Bellman equation. We have given three examples of time-inconsistent dynamic 
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optimization problems which can arise in insurance and finance and we have 
presented the solution for the exponential utility maximization problem with 
wealth-dependent risk aversion.
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* * *

Niespójne w czasie optymalne problemy sterowania 
stochastycznego w ubezpieczeniach i finansach

Streszczenie
W artykule rozważono niespójne w czasie optymalne problemy sterowania sto-

chastycznego. Omówiono pojęcie czasowej spójności optymalnych decyzji i związku 
czasowej spójności z równaniem Bellmana. Opisano, jakie konsekwencje dla pro-
blemu optymalizacyjnego ma niespójność czasowa optymalnych decyzji i wyjaśniono 
pojęcie równowagi Nasha, które wykorzystuje się do wyznaczenia rozwiązania dla 
niespójnych w czasie problemów optymalizacyjnych. Wyprowadzono rozszerzone rów-
nanie Bellmana, które stosuje się do wyznaczenia strategii w równowadze. Podano 
trzy przykłady niespójnych w czasie problemów optymalizacyjnych, które pojawiają 
się w ubezpieczeniach i finansach. Omówiono rozwiązanie problemu maksymaliza-
cji oczekiwanej wykładniczej funkcji użyteczności dla inwestora ze współczynnikiem 
awersji do ryzyka zależnym od bieżącego kapitału.

Słowa kluczowe: Równanie Bellmana, równowaga Nasha, niespójność w czasie, 
współczynnik awersji do ryzyka zależny od kapitału




