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Abstract

This paper concerns the Sparre Andersen model with a risk-switching mecha-
nism which enables effective modelling of an insurer’s claims. The distributions of
the claims’ amounts and/or respective waiting times are driven by a Markov chain
and the insurer can fit the premium rate in response. The risk-switching methodology
generalizes some well-known approaches in the ruin theory, which enables us to treat
numerous discrete- and continuous-time models simultaneously and in a unified way.
An upper bound for ruin probabilities in a risk-switching setting is also investigated.

Keywords: risk operators, risk-switching models, ruin probabilities, upper bounds,
Markov chains

1. Introduction

Regime-switching techniques are currently widespread throughout the actu-
arial and financial literature®. Recently, considerable attention has been paid
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to investigating the Markov-modulated Cramér-Lundberg model and its exten-
sions*. We will show that the idea of regime-switching, applied to the Sparre
Andersen model, leads to a fairly general notion of risk operator which enables
one to prove iterative upper and lower bounds for ruin probabilities®. Iterating
the risk operator can find some applications in the context of insolvency risk
management based on Solvency II principles. We refer the reader to Section
4 of Gajek and Rudz® where a simulation study is given showing how the Sol-
vency Capital Requirement (SCR) can be determined in accordance with Sol-
vency II regulations.

Set N={1,2,3,...}, R =(—e0,+20), N°=NU{0}, N' =N\ {1}, R =(0,e0), R?=[0,0)
and I@+ = (O,oo]. We assume that all the considered stochastic objects are defined
on a fixed probability space (Q,J’: ,IP’). Let a random variable X, denote the
amount of the kth claim, 7, — the moment when the first claim arrives and 7,
— the time between the (k—l)th claim and the kth one, keN'. Let A be the
moment when the nth claim arrives. Obviously, A =T, +..47T ,ne N° with
A, =0. A random variable C, will denote the insurance premium rate during
the interval [Ak_l,Ak). We assume that all the random variables C,, T, and X,
are positive (a.s.), ke N, and that their distributions have no singular parts.
Let us denote by {/,} _,

space S= {1, 2,...,3}, an initial distribution (p,),_, with positive probabilities

a time-homogeneous Markov chain with a finite state

p,= }P’(I 0= i), i€ S, and a transition matrix P = ( pl_l_)l_,l_és with non-negative proba-
bilities p, =P(/,
i # j) the distribution of 7, and/or X, atthe moment A, only’. We can thereby

. =Jl1,=1), i,je€S. The jump from I, to I, can update (if
interpret {/,},_, as ‘switches’.

Let ¢ be a known positive function defined on S. From now on, we make
the assumption that the insurance premium rate C, equals c(IH). Set Z, =
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environment, “‘Risks” 2013, vol. 1(3), pp. 148-161.

5 See also L. Gajek, M. Rudz, A generalization of Gerber’s inequality for ruin probabilities
in risk-switching models, “Statistics and Probability Letters” 2017, vol. 129, pp. 236-240;
L. Gajek, M. Rudz, Banach Contraction Principle and ruin probabilities in regime-switching
models, “Insurance: Mathematics and Economics” 2018, vol. 80, pp. 45-53; L. Gajek, M. Rudz,
Finite-horizon ruin probabilities in a risk-switching Sparre Andersen model, “Methodology and
Computing in Applied Probability” 2018, accepted for publication.

6 For details, see L. Gajek, M. Rudz, Finite-horizon...

7 For details, see L. Gajek, M. Rudz, A generalization...
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=X, —c([k_l)];<, keN and K =Z+..+Z ,neN, with K,=0. We will denote by
u >0 the insurer’s surplus at 0 and by U = U(n,u) — at the moment A , respec-
tively. The surplus process (risk process) {U,} _, is defined then by

U (n, u) =u—-K.

n

(1)

The framework described above generalizes® numerous models of ruin the-
ory, including: the discrete time risk-switching model, the continuous time
risk-switching model with exponentially distributed waiting times, the Sparre
Andersen risk model, the classical non-switching Cramér—Lundberg risk model
and the non-switching discrete time risk model.

The time of ruin 7 is said to be the first moment when the insurer’s surplus
falls below zero. More precisely

Tzr(u)zinf{neN:U(n,u)<0}, @))
where inf & means . The conditional probability that T(u) <n, given the state i
in the beginning, considered as a function of u, is called the probability of ruin

at or before the nth claim. We will denote it by ‘I‘Vi (u) Clearly
¥i(u)=0, ieS,ux0. €)

From now on

‘P”(u)=(‘Pnl(u),...,‘l‘:(u)), neN’ u>0. @)
Let us denote by F” (G, respectively) the conditional distribution of X, (T},

respectively), given the state 7 in the beginning and the state j at the moment A4,,
see Section 2 for details. Set

S 0 0o

()= S e (e ) ®

8 For details, see Section 3.
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forall i e S and r € R. Assume that there exist® positive constants 7,.,....%; such that
Mi(r)=1, 6)

for each i €S. We call (rol,...,ro“) the adjustment vector.

Let R denote the set of all measurable functions defined on R? and taking
values in [0, 1]. We will denote by R* the following set: {(pl,...,ps):pi e R for
each i e S}. Its elements will be written in bold.

Let p= (pl,...,ps) eR’. Wecall L= (Ll,...,Ls) :R°*— R’ the operator genera-
ted by the risk process (in short risk operator) if

Lp(u)=(Lp(u),...L p(u)), u=0, (7)

where:

ZpZ/J. J p u+c t x)d ”( )dGif(t)

0M+Ll

+2p j j dF7(x)dG"(t), ieS. (8)
0 u+c 1
The above risk operator was used in Gajek and Rudz!° to improve and genera-
lize Gerber’s upper bound for finite-horizon ruin probabilities. What is more, by
iterating L on any point from a properly chosen metric space, one can approxi-
mate'! the ultimate ruin probability ¥ (u) = P(T(u) <o [ = i).
Forevery ieS and neN, re R, such that

Ee'™ < oo, )

let us denote
b(i,n)= ipi/.Ei/ (), (10)
j=1

where E’ (e'K") is the conditional expectation of €"", given the state i in the
beginning and the state j at the moment A, see Section 2 for details. Through-
out the paper, we will assume that neN and reR_ are such that (9) holds.

9 For details, see Theorem 2.
10 L. Gajek, M. Rudz, A generalization...
11 For details, see L. Gajek, M. Rudz, Banach Contraction Principle...
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Let a positive constant 7, (set, e.g., 1, = min {roi :1€ S}) be such that the follo-
wing inequality holds:

Mi(r) <1, (1

for each i€ S. Let R} (u) =e¢ ™ and R! (u) be the ith coordinate of the nth ite-
ration of L on R, (u)= (Ré(u),...,Rg(u)). Then, {R’i}nEND is a non-increasing se-
quence of upper bounds on ¥',i € S. Moreover, for r € (O, ro), it holds

‘R’i(u)—‘l‘i(u)‘ﬁe""“ o b(i,n), ieS,u=0,
r—r

which is the main result of the present paper'?.

A comprehensive treatment of Markov additive processes can be found, e.g.,
in Asmussen!3 or Feng and Shimizu'. For the detailed references to the queu-
ing theory, see, e.g., Reinhard!® or Asmussen'®. An operator-like approach dates
back to Taylor'” and it was further extended and generalized!® by Gajek!® and
Gajek and Rudz?.

2. Auxiliary results

In this section, we briefly sketch some basic facts concerning the risk oper-

ator L and the adjustment vector (rl

O,...,ros). For any Be F and any random

variable Y we will write:

12 For details, see Theorem 3.

13 S, Asmussen, Applied probability and queues, 2" ed., Springer, New York 2003.

14 R. Feng, Y. Shimizu, Potential measures for spectrally negative Markov additive processes
with applications in ruin theory, “Insurance: Mathematics and Economics” 2014, vol. 59,
pp. 11-26.

15 J M. Reinhard, op.cit.

16 S, Asmussen, Applied probability...; S. Asmussen, Risk theory...

17 G.C. Taylor, Use of differential and integral inequalities to bound ruin and queuing proba-
bilities, “Scandinavian Actuarial Journal” 1976, pp. 197-208.

18 For details, see Section 2.

19 L. Gajek, On the deficit distribution when ruin occurs-discrete time model, “Insurance:
Mathematics and Economics” 2005, vol. 36, pp. 13-24.

20 L. Gajek, M. Rudz, Sharp approximations of ruin probabilities in the discrete time models,
“Scandinavian Actuarial Journal” 2013, pp. 352-382; L. Gajek, M. Rudz, A generalization...;
L. Gajek, M. Rudz, Finite-horizon...; L. Gajek, M. Rudz, Banach Contraction Principle... and
references therein.
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P(B)=P(BI, =i),
oy | BB =01, =) if p,>0
]P’(B)_{ 0 if pij =0,

E' (V)=

E(Y|I,=id,=f) if p,>0
0 if p,=0,

P**(B)=P(B|I,=i,1,=},T,=1,X,=x),
H(t,x)=P"(T, <t,X,<x),
where i,j €S and #,x e R . With the above notation,
Fi(x)=P"(X, <x),
G (1)=P/ (1, <),
¥ (u)=P'(r(u)<n), (12)
W (1) = P!z (1) < o). (13)

Let us define ¢,: R’ — R by

gip(u)zzpii.,. J p(u+c(i)t—x)dF (x)dG" (i), (14)
j=L 0(0,uxc(i)]
where i€ S andu >0.
Obviously,
tp=(0,p,...L p)

is a linear operator transforming R’ into R’°, where both the symbols on the
left-hand side of the above notation are written in bold, while the coordinates
of the operator on the right-hand side are not in bold. From now on, we will
use the following conventions:

Lop(u)=p(u), Llp(u)=Lp(u)=(L1p(u) ..... Lsp(u)),

p(u)=p(u). £p(u)=to(u)=(t,p(u)..t p(u)).

~—
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where pe®R’ and u>0. Note that for all neN, pe®R*and u 20, the following
properties hold true:

L'p(u)=(LL"p(u),...L L p(u)), (15)

and

e'p(u)=(0,67"p(u),...0 £ p(u)). (16)

An important relationship combining ¥, ¥, and L is recalled below.
THEOREM 12\, Let the following assumptions hold for all i,je€ S, ke N' and
t,xe R+:

Al. The conditional distribution of the random variables Z,,...,Z,, given (I 0 =1h
I =}T=tX= x), is the same as the conditional distribution of the random
Va?iables Zl_f""Zk—}' given I =7j;

A2, H' (1,2)= F' ()G (o).

Then, for all neN° and u >0,

¥ (u)=L¥ (u)=L"¥ (u). (17)

n+1

The next theorem gives a sufficient condition for the existence of (rol,...,ro“').

THEOREM 222, Assume that for every ieS the set M; ={r2 O:Mi(r) <oo} is
right-open,

s

ipﬁdeFv (x)<c(i) 3, ;jngff (o)

j=1 j=1

and P’."‘)(X1 > c(i)Tl) >0 for some j, €S. Then there exists a vector (rol,...,r;) with
positive coordinates which satisfy (6).

The following lemma will be used to prove the main result of the present paper.

LEMMA 12, Let the assumptions of Theorem 1 hold. Then for all ie S, neN,
peR’and u>0

21 For the proof, see L. Gajek, M. Rudz, Banach Contraction Principle...

22 For the proof, see ibidem.

23 Lemma 1 and its proof are based on a Ph.D. thesis by M. Rudz, Wybrane oszacowania
prawdopodobieristwa ruiny [Selected estimates of ruin probabilities], Institute of Mathematics
of Polish Academy of Sciences, Warsaw 2013.
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007 p(u)=L L p(u)-¥! (u), (18)

n

or, equivalently,
E”p(u)=L"p(u)—‘€IE‘n(u). (19)

Proof. Note that, by (8), (14) and (17),

Lp(u)=(¢,p(u)+ ¥} (1), p(u)+¥; (1)) = tp (1) + P, (10),

thus (19) holds for #n =1. Assume that (19) holds for some #n € N. We shall show
that it holds for n+1 as well. Indeed, note that, by (8), (14) and Theorem 1, the
following equalities hold:

L (¢'p(u)+®, (w)=1,(¢"p(u)+ P, (u)+ ¥ (u)=t.£"p(u) + ¥ (),

for every ieS. Summing up, L”“p(u)z E"“p(u)+‘~1’n+1(u). By the induction
principle, (19) holds for every n e N. By (4), (15) and (16), (18) holds as well. ®

3. Examples of the risk operator for some special cases
of the risk-switching model

The risk-switching model generalizes several insurance risk models. In the
present section, we briefly sketch some of them, paying special attention to the
form of the associated risk operator. We hope it will cause no confusion if we
use the same notation in each of the models. In the case of discrete time, we will
assume that the random variables X, X,,... are non-negative (a.s.).

3.1. The discrete time risk-switching model

Assume that 7,7,,... are nonrandom, i.e., there exists a number m eR,
such that IP)(Tk = m) =1 for each keN. We will interpret 7,,7,,... as fixed time
periods equal to m (for instance, quarters), A — as the time to the end of the
kth period, and X, — as the sum of the claims in the kth period. Recall that the
random variables X ,X,,... are assumed to be non-negative. Since the jump

from I to I, can update the distribution of X, at the moment A, only, the
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changeover of the X, s distribution is possible at the end of the kth period. Let
a positive random variable y, = 7([ 1«1) = C(I H)m, where 7 is a known function
defined on S, denote the total amount of premiums in the kth period. Thus, the
amount of premiums in the first period, y,, given the state i in the beginning,
equals a positive real }/(i).

With this notation, under the conventions of Section 1, Z =X - y(I k—l) and

U(n,u):u—izk, neN’, (20)

k=1

denotes the insurer’s surplus at the end of the nth period. Clearly, {Un}nENO is
the corresponding risk process. The time of ruin 7 and the probability of ruin
up to the end of the nth period, ‘P”;, are defined just like in (2) and (12), respec-
tively. The above model is called the discrete time risk-switching model?*. An
important point to note here is the following form of M*:

)= ]IS p ), fesrex @
oo =1

Surprisingly enough, M’ reduces to an analogous function associated with
a non-switching model® in which the aggregated claim distribution in each
period is a mixture of distributions F"', F*?,..., F* with the weights p.,p,,,...p,,
respectively. Thus, each positive roi satisfying Equation (6) is the adjustment coef-
ficient for a model without a switch.

In the discrete time risk-switching model,

s

Lip(u) = zpij J pi(u+y(i)—x)dFii (x)+2pii ,[ dF’ (x), (22)
j=t [0u+y(i)] =t u+y(i)

forall ieS, p= (pl,...,ps) eR’and u>0. By Theorem 1, if forall i,j €S, ke N/,

and x € Rf the conditional distribution of the random variables Z,,...,Z,, given

(IO =i, =7,X, = x), is the same as the conditional distribution of the random

variables Z,...,Z_,, given I,=9j, then (17) holds.

24 Cf. L. Gajek, M. Rudz, Finite-horizon...; L. Gajek, M. Rudz, Banach Contraction Prin-
ciple...
25 For details, see (26).



138 Lestaw Gajek, Marcin Rudz

3.2. A risk-switching model with exponentially distributed waiting times

Let 1(x>0)=1 if x>0 and 0 otherwise. If p, >0, assume that Gi’(t):
= (1 _e M )l(t > 0), where the scale parameter ;>0 depends on the states i and
j of {Ik}keN"
Section 1, combined with the above one, we can write (8) in the following form:

at the moments A and A, respectively®®. Under the assumptions of

Lip(u) = ipi]. Tlﬁe%’/ J P, (u + c(i)t - x)dFii (x) dr+ ipi/. T/li/.e%”l T dF" (x)dt,
=1 0 =t 0

(O,u+c(i)t] “+C(i)t

where i€ S, p= (pl,...,ps) e R and u >0. The function M": R — R_is defined by

m (r) - ipii ];)“i/ e m(i))ldt]ie'%dpii (x)
j=1 0 .

The model described above generalizes the classical Cramér-Lundberg one.
Indeed, it is sufficient to make the following assumptions: s=1; the sequence
{T},_, consists of independent exponentially distributed random variables with
the same scale parameter A4 >0; the sequence {X,},_, consists of independent
and identically distributed random variables and is independent of {7, },_ and
C, equals a known positive real. Recall that there are several papers and mon-
ographs concerning the Cramér-Lundberg model?’.

3.3. The Sparre Andersen risk model

Under the notation of Section 1, assume that: s=1; the sequence {7} _,

consists of independent and identically distributed random variables sharing
a distribution function G; the sequence {X, },_ consists of independent and iden-

tically distributed random variables sharing a distribution function F; {X,},

26 A special case of this model can be found in L. Gajek, M. Rudz, Banach Contraction
Principle...

27 To list only a few recent monographs: F. Lundberg, I. Approximerad Framstdllning av
Sannolikhetsfunktionen. II. Aterférsikring av Kollektivrisker, Almqvist & Wiksell, Uppsala
1903; H. Cramér, On the mathematical theory of risk, Skandia Jubilee Volume, Stockholm
1930; T. Rolski, H. Schmidli, V. Schmidt, J. Teugels, Stochastic processes for insurance and
finance, Wiley, New York 1999; S. Asmussen, Ruin probabilities, World Scientific, Singapore
2000 (reprinted 2001); P. Embrechts, C. Klippelberg, T. Mikosch, Modelling extremal events
for insurance and finance, corrected 3™ printing, Springer-Verlag, Berlin-Heidelberg 2001;
D.C.M. Dickson, Insurance risk and ruin, Cambridge University Press, Cambridge 2005.
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is independent of {7} }, , and C, = ¢, where ¢ will denote here a known positive

real. The model described above is called the Sparre Andersen risk model?®.
Under the above assumptions, one can define U, and 7 similarly as in (1) and

(2), respectively. The probability of ruin at or before the #nth claim is defined by

v (u)=]P’(T(u)Sn). (23)

Fix the distribution functions F and G, and the premium rate ¢ per unit time.
A one-dimensional risk operator L:9R — R is defined by

Lp(u)=] | plu+ct-x)dF(x)dG(e)+ ] [ dF(x)dG(r),

0 (O,M+C[] 0 u+ct

where pe® and u>0. The function M:R — R _is defined by

00 0o

M(r) = J‘J.efy(mfx)dF(x)dG(Z).

00

A positive constant 7, such that M (ro) =1, if it exists, is called the adjustment
coefficient.

3.4. The discrete time risk model without a switch

Under the notation of Subsection 3.1, let us assume that: s =1; the sequence
{X,}, consists of independent and identically distributed random variables
sharing a distribution function F. Let y, =y, where 7 is a known positive real.
This model can be found, e.g., in the papers by Bowers et al.??, Klugman et al.?°,

28 For details, see, e.g., E. Sparre Andersen, On the collective theory of risk in the case of
contagion between the claims, in: “Transaction XVth International Congress of Actuaries” New
York 1957, vol. I1, pp. 219-229; T. Rolski et al., op. cit.; D.A. Stanford, F. Avram, A.B. Badescu,
L. Breuer, A. da Silva Soares, G. Latouche, Phase-type approximations to finite-time ruin prob-
abilities in the Sparre Andersen and stationary renewal risk models, “ASTIN Bulletin” 2005,
vol. 35, pp. 131-144.

29 N.L. Bowers, H.U. Gerber, J.C. Hickman, D.A. Jones, C.J. Nesbitt, Actuarial Mathema-
tics, 2" ed., The Society of Actuaries, Schaumburg 1997.

30 S A. Klugman, H.H. Panjer, G.E. Willmot, Loss models. From data to decisions, Wiley,
New York 1998.
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Rolski et al.’!, Gajek*, Gajek and Rudz** and Rudz**. It can be interpreted as
a special case of the Sparre Andersen model3.
A one-dimensional risk operator L: 2R — R is given by

Lp(w)= [ plu+y—-x)dF(x)+ [ dF(x) (24)

[0,u+7] u+y

for all pe®R and u >0. Note that Assumption Al is fulfilled®® in the present
model. Thus, by Theorem 1,

¥ () =L, (u), (25)

where ‘¥, (u) =0 for every u = 0. The risk operator (24) and the property (25) fol-
low from Gajek??, where the deficit distribution at ruin was investigated using L.
The function M:R— R_is defined by

M(r) = e_’(y_x)dF(x). (26)
[0.)
As in Subsection 3.3, a positive constant 7, such that M (ro) =1, if it exists, is cal-
led the adjustment coefficient.

4. An iterative upper bound for ruin probabilities

Assume that there exists a positive constant 7, such that (11) holds for each
1e€S. Given i €S and u >0, we will denote

31 T. Rolski et al., op.cit.

32 L. Gajek, op.cit.

33 L. Gajek, M. Rudz, Sharp approximations...

34 M. Rudz, A method of calculating exact ruin probabilities in discrete time models, “Roczniki
Kolegium Analiz Ekonomicznych” [Annals of Collegium of Economic Analyses] 2015, vol. 37,
pp- 307-322; M. Rudz, Precise estimates of ruin probabilities, “Metody iloSciowe w badaniach
ekonomicznych” [Quantitative methods in economics] 2015, vol. XVI, no. 2, pp. 80-88.

35 0. Thorin, Stationarity aspects of the Sparre Andersen risk process and the corresponding
ruin probabilities, “Scandinavian Actuarial Journal” 1975, pp. 87-98.

36 Cf. Subsection 3.1.

37 L. Gajek, op.cit.
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Riu)=e™

and

R (1)=(R) u). ... ().

For every i €S, let us define iteratively a sequence {R'} _ by
R()-L R (1), @)
where
R (u) = (R; (u),...,R; (u)), neN,u=0.
Note that
R (u)=L.L"'R (u), (28)
or, equivalently,
R (u)=L'R (u)=LR _ (u). (29)

For each i € S, by the ideas of Gajek??, one can show that {R:l}neNO is a non-in-
creasing sequence of upper bounds on ¥'. Therefore,

W (u)<Wi(u)<Ri(u), ieS keN’,uz=0. (30)

The following theorem is the main result of the paper. Its special cases can
be found in Gajek* and Rudz*.

THEOREM 3. Let the assumptions of Theorem 1 hold. Assume that there
exists a positive constant 7, which satisfies (11) for each i€ S. Then

Ri(u)—‘l’i(u)‘ée”“ il b(i,n), ieS, neN,re(O,rO),uZO, (31)

r,=r

where b(i,n) are defined by (10).

38 Ibidem.
39 Ibidem.
40 M. Rudz, Wybrane oszacowania...
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Proof. Let W be a random variable with the following properties:

P1. W is conditionally independent of all the random variables of the model,
given (I,=i,I, =},T = t,X,=x).

P2. W is conditionally independent of all the random variables of the model,
given (IO =i, = j).

P3. W is conditionally independent of all the random variables of the model,
given [ =j.

P4. Wis independent of [, and I,.

P5. Wis independent of C,,...,C ..., T,...,T ,...and X ,..., X ,....

P6. P(W < x)= (1— e_r"x)l(x >0),

where i,j€S and t,x € R, in P1-P3.
We will show that the following inequality holds:

P (W >U(nu))= (4R, (u), (32)

forall ieS, neN and u=>0.
By the law of total probability,

P(W>U(Lu))=P(W>u-X+CT)
>P(W>u-X+CT,X, <u+CT)

=iP(W>u X +CT,X, <u+CT,I =i)
p;

iEP(Wm X +CT, X, <u+CT,I =il =j).

11’ 1’
111

Therefore, (14), Assumptions A2, P2, P4 and P6 imply that P’ (W >U (l,u))
equals
P(W>u-X+CI,X, <u+CT,I, =il =j)

11
z pij IP)(10_1’11_])

{jeS: pl],>0}

= Y p,PI(W>u-X+c(i)T,X, <u+c(i)T;)

{jeS: pi,.>0}

—Zpll_[ j P(W >u))dF" (x)dG" (¢)=¢,R, (u),

Ou+cz

where u; = u+c(i)t—x. Thus, (32) holds for n=1. Assume that (32) holds for
some #n € N. We shall show that it holds for n+1 as well. Indeed, in much the
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same way as above, from P1, P3-P5 and Assumptions A1-A2, we deduce, by the
law of total probability and the induction assumption, that

PW>U(n+1Lu)) 2P (W>U(n+Lu),X, <u+CT)

Y pPH(W>U(n+lu)X, <u+c(i)T)

{ies: p,>0}
> p”j J IP’””‘[WNA—%Z JdF"( )dG" (1)
{,eé », >0} 0(0,u+ci)t

= 2 piiif j ]P’i(W>U(n,u£))dF”(x)dG”(t)

{jes: ;03 0(0,u+e(i)]

>2pl/j j M“R u)dF’ (x)dG (z)

0 u+cz
=(L"R ().

By the induction principle, (32) holds for every #n € N.

For neNand r e (0,1’0), we get, by P5-P6 and the assumptions of Section 1,
that Be V") < oo Therefore, for given neN, re (0,1’0), ieS and u>0, by
P2, P4 and P6,

pij

I e

(W>U(nu),1,=i1, =j)

p;
IP’(I =il —])

dP

{jeS: p,>0} {W>U(n,z4),10:i,11:i}

<y __ B [ ertturigp

{/ES:pU>O}]P)(I()_ 4= ){W>U(n,u),10:i,11:j}

S ¢~ (Vln}-W) g
P(1,=i,1,=})

{jeS: p;>0} {[o:i'llzi}
= Y pEE "L =i, =)
{jeS: p;>0}
T
=e ™ —2b(i,n). (33)

r,—r



144 Lestaw Gajek, Marcin Rudz

By (32) and (33), it holds

(4R () e 0 b(i,n).

r=r
Thus, by (28), (30) and Lemma 1,
_ . . o T .
R e Y R )
which completes the proof. u
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%ok sk

Przelacznikowe modele ryzyka niewyplacalnosci

Streszczenie

Artykut dotyczy modelu Sparre Andersena z mozliwoscig przetaczania charakte-
rystyki ryzyka, ktéra umozliwia efektywne modelowanie szkéd ubezpieczyciela. Wyso-
kosci szkéd oraz czasy oczekiwania na nie majg rozktady zalezace od stanu tanicucha
Markowa, a ubezpieczyciel moze dynamicznie modyfikowa¢ sktadke, znajgc historie.
Metodologia przetaczania ryzyka ubezpieczeniowego uogélnia pewne znane wyniki
w teorii ruiny, co umozliwia modelowanie w jednolity sposéb zaréwno czasu dyskret-
nego, jak i cigglego. Rozwazane jest takze gérne oszacowanie prawdopodobiefistwa
ruiny w modelu przelgcznikowym.

Artykul powstal w ramach projektu badawczego sfinansowanego ze §rodkéw przy-
znanych na utrzymanie potencjalu badawczego Wydzialu Fizyki Technicznej, Infor-
matyki i Matematyki Stosowanej Politechniki £.6dzkiej.

Slowa kluczowe: operatory ryzyka, przetacznikowe modele ryzyka, prawdopodo-
biefistwo ruiny, gérne oszacowania, tancuchy Markowa



