
Jerzy leyk

Normalised Frame Language – towards
a Complete Metatext Execution Tree

1. Introduction

The frame is regarded as a cognitive model, a pattern that is applied, and
simultaneously adapted, to a new, yet similar situation. In computing, such
a concept of frames was introduced by Paul G. Bassett in the mid 1980 s1. There
are two main reasons for applying this concept in software engineering:
a) to generate target language text (e.g. program code) in different variants

depending on a predefined number of parameters and conditions. In other
words, to obtain diversity based on structural similarity;

a) to discover similarities in an already existing code to reduce redundancy
and identify potential errors2.
In both cases the business purpose is to reduce the costs of software deve-

lopment and maintenance. The frame approach results also in higher clarity of
created texts (e.g. software packages) and lowers the error proneness. It differs
from other techniques known in software engineering. For example, object orien-
ted programming (OOP) focuses on the construction of encapsulated functional
units in the source code, whereas frames operate on texts of any kind – not just
software codes (including OOP texts) – and organise them3. In OOP, the decisions
are bound at run time, in the frames approach – at development time.

1 P. G. Bassett, Framing Software Reuse: Lessons from the Real World, Yourdon Press, Pren-
tice Hall, 1997. Bassett’s frames discussed in the paper should not be confused with frames of
knowledge representation (ontology) languages (cf. the survey in P. Karp, The Design Space of
Frame Knowledge Representation Systems, “Technical Note 520”, Artificial Intelligence Center,
SRI International, 1992, available at: http://www.ai.sri.com/pub_list/236, as of 2014–06-30).

2 H. A. Basit, S. Jarzabek, Data Mining Approach for Detecting Higher-level Clones in Software,
“IEEE Transactions on Software Engineering”, vol. 36, no 4, July/August 2009, pp. 497–514.

3 A comparative study of other techniques is beyond the scope of this paper. Pre-processors,
object oriented programming, features oriented programming, compositional programming,
software product lines may be mentioned, cf. Framework for Software Product Line Practice,
Version 5.0, Software Engineering Institute, Carnegie Mellon, available at: http://www.sei.
cmu.edu/productlines/frame_report, as of 2014–06–30.

260 Jerzy Leyk

The application of frames requires means that define frames and construct
outputs using them – frame languages. Many different frame languages have
already been developed and implemented4. Despite their different forms, the
main instruments have similar motivation and functionality.

Documented theoretical foundations of frame languages are poor5. The au-
thors are much more oriented on the engineering aspects. This paper focuses on
some of the foundations. The study of frame languages in the paper is motivated
by the following main questions:
1. What are the properties of all possible final texts that can be generated using

a given set of frames?
2. What can be proposed in order to establish measures for quantifying and

qualifying such a set?
As all of the possible final texts available from a set of frames constitute,

for example, a software system, from the engineering point of view it becomes
crucial to estimate it and identify its weaknesses.

The first step to achieve these objectives requires a theoretical background that
will be independent from different realisations of frame languages. The second
step – a proposal of measures as such. The paper concentrates on the first step.

2. Definitions

The meaning of terms presented here is not a formal one. The definitions
below should help to understand the terms as they are used in the paper:

4 Cf. P. G. Bassett, op.cit.; with regard to XVCL: S. Jarzabek and H. Zhang, XML-based
Method and Tool for Handling Variant Requirements in Domain Models, “Proceedings of the 5th
International Symposium on Requirements Engineering”, RE’01, Toronto 2001, pp. 166–173,
as well as: XVCL: A Tutorial, http://xvcl.comp.nus.edu.sg/xvcl_tutorial.php, Singapore, 2010;
with regard to Scriptor: J. Leyk, Frame Technology Applied in the Domain of IT Processes Job
Control, “Advanced Information Technologies for Management – AITM 2011: Intelligent Tech-
nologies and Applications”, eds. J. Korczak, H. Dudycz, M. Dyczkowski, Research Papers of
Wroclaw University of Economics no. 206, Wrocław 2011, pp. 96–107; with regard to FPL:
F. Sauer, Metadata driven multi-artifact code generation using Frame Oriented Programming,
Position Paper, OOPSLA 2002 Workshop on Generative Techniques in the context of Model
Driven Architecture, November 4~8, 2002, available at: http://www.volantec.biz/metadata-
driven.pdf, as of 2014–06–30.

5 For instance P. G. Bassett, op.cit., and Ch. Holmes and A. Evans, A review of Frame Tech-
nology, University of York, 2003, available at: http://www.cs.york.ac.uk/ftpdir/reports/YCS-
2003–369.pdf, as of 2010–06–30.

261Normalised Frame Language – towards a Complete Metatext Execution Tree...

Language6 – a set of elements and rules which is used to compose sequences
from these elements recognised as valid (correct).
Lexeme – a minimal unit of language that is not further decomposed into smaller
units for the purpose of particular analysis.
Text – any sequence of lexemes in the given language.
Object language – a language in which texts from a particular field are supposed
to be expressed.
Metalanguage7 – a language the lexemes of which can be used in texts of an
object language according to its own rules and which can be finally interpreted
as sequences of object language lexemes. The metalanguage is object language
independent.
FL – frame language – the metalanguage defined to compose texts in object
language using the concept of frames.
NFL – Normalised Frame Language – the frame language defined in this paper
as the common basis for a theoretical analysis of metatexts.
AFL – application specific frame language – any FL designed to be used in a par-
ticular domain, among them the classical FL as presented by Bassett8.
Metatext, generic text – a text in the frame language including lexeme sequences
from an object language. Such a mixture implies that metalanguage lexemes
need to be recognisable as not belonging to the object language9.
Text processor – a device (program, process, actor or similar) capable of creating
an object language text from any metatext built by the use of a metalanguage.
Metatext execution, text generation – the process in which frame language
elements in the metatext are executed (interpreted) conforming to the frame
language principles in order to obtain an object language text.
Final text – text in the object language resulting from the metatext execution.
Frame – a uniquely identified structural fragment of metatext from which the
text processor may generate different variants of object language texts by means
of frame adaptation rules. Conceptually, a frame is designed to be reusable.

6 No further assumptions on elements nor rules are relevant for the discussion on frames,
therefore no formal definition of the term language is applied.

7 Definitions of a metalanguage usually describe a metalanguage as a language in which
properties, rules, statements, etc. about an object language are expressed. The definition pre-
sented here has another purpose.

8 A study on such implementations may be found in Ch. Holmes and A. Evans, op.cit.
9 The metatext should satisfy the frame language syntax. The object language syntax is ir-

relevant here; it becomes crucial in the final texts created. Hence, the author of the generic
text must make sure that final outputs satisfy the syntax rules of the object language.

262 Jerzy Leyk

Directive, command – a formal structure of the frame language that describes
a valid operation for the text processor and is represented by a sequence of
metatext lexemes terminated by the begin and end markers.
Frame parameter – a metalanguage lexeme that is replaced by the processor
at the moment of the metatext execution by the currently assigned sequence of
lexemes.
Reserved word –a predefined metalanguage lexeme applied in the metalanguage
directive as part of its syntax. A reserved word in a metatext outside a directive
is considered an object language lexeme.

3. Normalised Frame Language

FL elements in the metatext tell the text processor what actions (operations)
are to be performed in order to obtain the final text in the object language. When
calling (invoking) the processor, one must define which final text from the many
possible ones (at least one) incorporated in the metatext is to be generated. The
selection is done by setting the invocation parameters. If no parameter is set
externally, the processor can create only one final text, otherwise a variant of
the final text that conforms with the externally set values of frame parameters
will be generated.

For the purpose of theoretical considerations an NFL is proposed below. The
use of such common language provides some metatext theory foundations leading
to the concept of CoMET. This objective requires a stronger discipline, reflected
already on the level of the language, than in the classical FLs, where many NFL
properties are, in fact, hidden in the FL processors. Therefore, it is assumed
that a well-defined metatext based on the classical FL can be transformed into
the NFL format10. Such an assumption justifies the use of the term ‘normalised
frame language’. Hence, the transformation can be viewed as normalisation.

10 On the level of language syntax, such transformation possibilities of classical FLs (also
breakpoints and loops) and Scriptor (also conditions and steps) seem evident. A proof of an
equivalent transformation of generated results is, however, not fully possible as long as the
properties of the text processor behind a particular AFL remain unknown or are not taken
into account.

263Normalised Frame Language – towards a Complete Metatext Execution Tree...

BNF-like notation rules are applied to the NFL syntax presentation. The
reserved words and syntax details applied here are only illustrative. In practice,
they may be represented in a metalanguage differently11.

Table 1. Normalised frame language syntax

No. Syntax Function Description

1a FRAME <frame-name>
FRAME-BEGIN
<metatext-fragment>

FRAME-END

Frame
definition
directive

Identifies a frame and specifies
the frame body as <metatext-
fragment>.
<frame-name> must be unique
within the metatext.

1b MODULE <module-name>
MODULE-BEGIN
<module-body>

MODULE-END

where <module-body> is:

[{<external-frame-
parameter>} …]
[ADAPT <specification-
class>]
<metatext-fragment>

Module
definition
directive12

Identifies a frame that is allowed
as the starting point for processor
invocation (that is for final text
population), specifies applicable
external frame parameters
declared by VARIABLE or
SELECT and indicates the class of
applicable specification frames.

Within any metatext a module can
be used exactly like a frame.

1c SPECIFICATION
<specification-name>

CLASS <specification-
class>

[<specification-body>]
SPECIFICATION-END

where <specification-body>
is:

{<SET-directive>} …

Specification
frame
definition
directive

Identifies external frame
parameter assignments valid for
a particular execution of a module,
provided this specification class is
attached to the module.

Within any metatext a specification
can be used exactly like a frame.

11 For example, so as to uniquely distinguish each directive, the initial reserved word can
be preceded by a special character or string of characters; similarly, any reference to a frame
parameter in the metatext may be preceded and followed by special symbols.

12 In frame languages usually there is no distinction made between a module and a speci-
fication frame. The entire relevant frame body is placed in the specification frame which is
invoked directly. Such approach means that either each specification frame redundantly re-
peats the text body placed in a module frame or ADAPTs a main control frame that works as
a module. Cf. P. G. Bassett, op.cit., J. Leyk, op.cit., F. Sauer, op.cit., XVCL: A Tutorial, op.cit.

264 Jerzy Leyk

No. Syntax Function Description

2a VARIABLE <variable-name>
 {EXTERNAL | LOCAL |
INHERITED | RETURN |
RETURN- LOCAL}
PHRASE-BEGIN
<value-range>
PHRASE-END

Declaration
directive
of variable
type frame
parameter

Declares a variable and the range
of allowed values.
Only a frame parameter of
variable type can be used
in parameter substitution.

2b SELECTOR <selector-name>
{EXTERNAL | LOCAL |
INHERITED}
PHRASE-BEGIN
<value-range>
PHRASE-END

Declaration
directive
of selector
type frame
parameter

Declares a selector and the range
of allowed values.
Only a frame parameter of the
selector type may be used as
a frame parameter in the CASE
directive.

3 SET
{<variable-name> |
<selector-name>}
PHRASE-BEGIN
<parameter-value>
PHRASE-END

Frame
parameter
assignment
directive

Assigns value to a frame language
parameter. The value will be
substituted for the parameter once
encountered by the text processor
from this point according to the
scoping attribute.
<parameter-value> must be
a lexeme from the <value-range>
in the parameter declaration.

4 <variable-name> occurrence Variable
substitution

Replaces <variable-name>
in <metatext-fragment> in its
position by the currently assigned
value.
Not applicable within directives
(except for <metatext-fragment>).

5 ADAPT <frame-name> Frame
adaptation
and insertion
directive

Adapts the indicated frame by
executing NFL instruments within
the frame and inserting the result
in the ADAPT position.
Module and specification frames
may be applied, the latter only
in a module.
Nesting of ADAPTs is allowed,
however non-recursively (acyclic).

CASE <selector-name> IN
{<range> PHRASE-
BEGIN
<metatext-fragment>
PHRASE-END} …

CASE-END

Disbranching
directive

Inserts one of the <metatext-
fragment>s depending on the
<range> that is satisfied by the
current value of the selector-
name>.
Assumptions on <range>s:
a) ranges are subsets of the

<value-range> in the selector’s
declaration,

b) ranges are distinct,

265Normalised Frame Language – towards a Complete Metatext Execution Tree...

No. Syntax Function Description

c) the number of ranges is finite,
d) the sum of ranges equals

the <value-range>
(exhaustiveness).

CASE directives can be nested but
their <selector-name>s should
not.

7 INVOKE <module-name>
[SPECIFICATION
<specification-name>]
<invocation-body>

INVOKE-END

where <invocation-body> is:

[{<SET-directive>} …]

Processor
invocation
quasi-
directive

INVOKE is not a part of the
metatext.
It tells the text processor which
module should be traversed
for final text generation and
what the initial values of the
frame parameters relevant for
a particular run of the processor
are.

Source: Own work.

Table 2. Normalised frame language – additional rules and constraints

No. Subject Description

1 Reserved
words

Are expressed in the frame syntax in uppercase.

2 <names> A name must not be a reserved word.
Sets of <frame-name>s, <variable-name>s, <selector-names>s
and <specification-class>s should be distinct (mutually exclusive)
within one metatext.

3 <metatext-
fragment>

A contiguous sequence within the metatext (an empty one as well).
Both object language and metalanguage lexemes are allowed.

4 Frame
declarations

May not be nested, i.e. <metatext-fragment> cannot include
another FRAME, MODULE or SPECIFICATION directive.

5 Frame
parameter
types

Two types of frame parameters exist in NFL:
a) variable – may be the subject of parameter substitution,
b) selector – may be used in a CASE directive as <frame-

parameter>.
Values of frame parameters are regarded as one lexeme from
an ordered set specified by <value-range> (0-length lexeme is
always considered as valid). The way <value-range> is specified is
irrelevant for this paper.

266 Jerzy Leyk

No. Subject Description

6 Frame
parameter
scoping

Frame parameter scoping attributes determine in which frame
value can be assigned to the parameter and over which frames this
assignment remains valid during metatext execution.
a) INHERITED – valid assignment only in the frame where

declared, the value inherited down in the hierarchy. This is the
default option for any frame parameter declaration.

b) EXTERNAL – may be declared only in a module, valid
assignment only in this frame and in an INVOKE directive,
the value inherited down in the hierarchy. The purpose of
EXTERNAL is to predefine clearly which parameter can be set
in INVOKE.

c) LOCAL – much like INHERITED. LOCAL overwrites the
validity and scope of a parameter of the same name declared
higher in the hierarchy. LOCAL helps developing a metatext
in independent pieces protecting coincidental use of the same
<parameter-name> for different purposes.

d) RETURN – valid assignments in any frame in the frame
hierarchy, recently assigned value holds down and up in the
hierarchy. RETURN serves the purpose of transferring values
from frames in the upward direction and of modifying them
down the hierarchy.

e) RETURN-LOCAL – properties of RETURN and LOCAL.

7 INVOKE INVOKE directive may be considered attached to the metatext at its
very beginning as a separate module, where SET phrases become
SET directives and the frame ends with an ADAPT of the invoked
<frame-name>.
The link between a specification frame, a module and the INVOKE
directive is expressed in the following way:
a) in the SPECIFICATION directive, the clause CLASS indicates

a class of specification frames to which the specification frame
belongs,

b) in the MODULE directive, the ADAPT <specification-class>
directive (when present) points to the class of specification
frames that may be applied in the module,

c) once indicated in the INVOKE, directive the <specification-
name> frame is attached to the invoked module via the ADAPT
<specification-class> directive,

d) the frame parameters assigned in the specification frame must be
declared in the module as EXTERNAL – otherwise no assignment
will take place.

In the INVOKE directive the list of SETs following the
SPECIFICATION clause is executed after the specification frame
contents – this allows overwriting ad hoc some specification frame
assignments.
The <specification-class> concept enables a better control over
specification frames allowed for invocation via a particular module.
Once specification frames can be individually added during
metatext development, the module contents remains stable.

Source: Own work.

267Normalised Frame Language – towards a Complete Metatext Execution Tree...

4. Metatext theory

Evaluation of the properties of FL application requires the establishment of
certain measures. Many authors (for instance Bassett and Sauer) who deal with
FL present frame structures using graphs that reflect the relations between frames
via ADAPT directives only and that allow multiple parents. This is definitely insuf-
ficient when it comes to treating and measuring the potential of a metatext, first
of all because CASE directives are hardly ever represented in such an approach.

CoMET – a complete metatext execution tree based on NFL is introduced
below. The objective is to represent a particular module of metatext with all po-
ssible variants for execution. The collection of all modules of the given metatext,
not excluding standalone frames, is then a graph theory forest.

4.1. CoMET – complete metatext execution tree

Let G be a graphical presentation of a well formed13 NFL module achieved
according to the rules in table 3.

Table 3. CoMET construction rules

No Rule description

1 Metatext sequences of lexemes are grouped and its nodes denoted as follows:
a) consecutive sequence of object language lexemes and/or frame variables within

the <metatext-fragment>, not including or being a part of ADAPT or CASE
directive – denoted as <frame-name>. OL-<sequence number in the frame>14

b) ADAPT directive with its body – denoted as <frame-name>
c) CASE directive with its body – denoted as <frame-name>. CASE-<CASE

directive number in the frame>
d) <metatext-fragment> of a single range phrase of a CASE directive – denoted

as <frame-name>. CASE-<CASE directive number in the frame>. R-<range
number in this CASE>.

Other lexemes are not considered – e.g. SET directives, frame parameter
declaration directives, frame definition lexemes beyond the <metatext-fragment>
being their body.

13 ‘Well formed’ means here correct from the point of view of the grammar of the meta-
language only, not of the object language.

14 On the metalanguage level, one can imagine a single OL-sequence as a uniquely iden-
tified object language piece of a document including (or not) FL variables to be replaced by
object language lexemes. From such point of view, the metatext strongly resembles an edi-
ting tool to manage the composition of documents from smaller reusable pieces.

268 Jerzy Leyk

No Rule description

2 Root node is the body of the module definition, i.e. its <metatext-fragment>.

3 Edges are ordered pairs of nodes of the following types:
a) (metatext-fragment, OL-sequence within the metatext-fragment)
b) (metatext-fragment, ADAPT directive within the metatext-fragment)
c) (metatext-fragment, CASE directive within the metatext-fragment)
d) (CASE directive, metatext-fragment of its single range phrase)
e) where metatext-fragment is the body of a frame or of a single range phrase of

the CASE directive.

4 The following NFL syntax rules apply:
a) nesting of ADAPT directives may not lead to frame recursion (cycle),
b) list of ranges per each CASE directive is finite and exhaustive,
c) nesting of CASE directives may not lead to <selector-name> repetition.

5 To create a graph, the module definition body is processed sequentially, each
encountered ADAPT is resolved like the module frame, CASE directive split by
ranges, and so on, until all the edge ends become OL-sequence leaves.

Source: Own work.

Figure 1 presents a sample of a single module metatext and figure 2 its gra-
phical representation.

Some features and properties of the complete metatext execution of graph G:
1. The construction process of graph G is finite due to the following principles:

(a) the metatext is finite, (b) the number of lexeme sequences, ADAPTs, CASEs
and CASE-range occurrences are finite, (c) ADAPTs are not cycled.

2. Nodes are not unique, but there are no cycles. Different occurrences of the
same frame label with the entire sub-tree are repeated once reused.

3. In the construction of final texts, the relation between edges from CASE
to CASE ranges is treated as an alternative (OR); otherwise as a conjunction
(AND).

4. Leaves are <metatextfragment>s – empty or composed of OL-sequences
only.

5. Any final text available via the metatext is a subset of the sequence of leaves.
6. A sequence of leaves may be presented in a bracketed form preserving the

inherited AND/OR relations between the edges on the path from the root.
7. Not all frames of the metatext are present in the graphical representation

– those for which there is no path from the root are absent.
A linear representation on leaves level using ∧ (AND – concatenation), ∨ (OR

– alternative), (,) of the tree:

A. OL-1 ∧ B. OL-1 ∧ (A. OL-2 C. OL-1 ∧ B. OL.1) ∧ (B. OL.1 ∨ empty) ∧ B. OL-1

where: empty stands for 0-length lexeme.

269Normalised Frame Language – towards a Complete Metatext Execution Tree...

MODULE A MODULE-BEGIN
SELECTOR parameter-1 EXTERNAL PHRASE-BEGIN val-1, val-2 PHRASE-END
SELECTOR parameter-2 EXTERNAL PHRASE-BEGIN val-3, val-4 PHRASE-END
ADAPT specification-class-1
VARIABLE variable-1 LOCAL PHRASE-BEGIN a, b, c PHRASE-END
OL-sequence-A1
SET variable-1 PHRASE-BEGIN a PHRASE-END
ADAPT B
CASE parameter-1 IN

 {val-1} PHRASE-BEGIN
 OL-sequence-A2
 INSERT C

 PHRASE-END
 {val-2} PHRASE-BEGIN
 CASE parameter-2 IN
 {val-3} PHRASE-BEGIN ADAPT B PHRASE-END
 {val-4} PHRASE-BEGIN PHRASE-END
 CASE-END
 PHRASE-END
 CASE-END
 SET variable-1 PHRASE-BEGIN b PHRASE-END
 ADAPT B
MODULE-END

SPECIFICATION spec-1 CLASS specification-class-1
 SET parameter-1 PHRASE-BEGIN val-1 PHRASE-END
PHRASE-END

FRAME B PHRASE-BEGIN
 OL-sequence-B1-with-substitutions-of-variable-1
PHRASE-END

FRAME C PHRASE-BEGIN
 OL-sequence-C1
 SET variable-1 PHRASE-BEGIN c PHRASE-END
 INSERT B
PHRASE-END

FRAME D PHRASE-BEGIN
 OL-sequence-D1
 INSERT B
PHRASE-END

Figure 1. Example of a metatext
Source: Own work.

270 Jerzy Leyk

	

A

A.OL-1

A.OL-2

B A.CASE-1 B

A.CASE-1.R-1 A.CASE-1.R-2

C

C.OL-1 B

B.OL-1

B.OL-1B.OL-1

A.CASE-2

A.CASE-2.R-1

B

B.OL-1

empty

A.CASE-2.R-2

OR

OR

Figure 2. Tree representation of a metatext – CoMET example
Source: Own work.

4.2. Metatext and the graph theory

A tree as a formal structure is crucial for analysing issues related to metatext
measurement. In the graph theory, the following definition of tree is applied15:

A tree (undirected) is an undirected graph G that is simple, is connected,
and has no cycles, and where:
1. An undirected graph is an ordered pair G = (V, E) comprising a set V of ver-

tices (nodes) together with a set E of edges (lines), which are two-element

15 R. Diestel, Graph Theory, Springer–Verlag, Berlin 2005.

271Normalised Frame Language – towards a Complete Metatext Execution Tree...

unordered subsets of V (i.e. each edge is an unordered pair of two vertices
and this relation is considered a connection between the two vertices).

2. A simple graph is an undirected graph that has no loops (i.e. each edge is
a pair of distinct nodes) and no more than one edge between any two differ-
ent vertices (i.e. edges as pairs in E are distinct).

3. A graph is connected, if every pair of vertices in the graph is connected, i.e.
for any pair of vertices u,v there is a path from u to v, where a path is a se-
quence of vertices such that from each of its vertices there is an edge to the
next vertex in the sequence.

4. A cycle is a path where the start vertex and the end vertex are the same.
A graph or a simple graph is directed, if the edges of E are ordered sets,

i.e. the relation represented by an edge points from one vertex (begin, source,
predecessor) to the other one (end, target, successor). A directed acyclic graph
(DAG) is a directed graph with no directed cycles.

It may be easily proven that G is a DAG by virtue of its construction principles
mentioned in 4.1: G = (V, E), where, V are nodes (p. 1), E (p. 3) are two-element
ordered subsets of V and there are no cycles (p. 4). It may also be proven that
from the algebraic point of view G is a semilattice16 bounded by the root.

5. Conclusions

Frame languages and frame technology are not widely known in the software
community. Lack of sound theoretical basis may be one of the obstacles in getting
wider interest. This paper presents some fundamental considerations. These
considerations include the author’s new concept of a normalised frame langu-
age, metatext normalisation and a complete metatext execution tree (CoMET)
based on the graph theory. Further studies into the nature of frame languages
are planned. The challenge for FL implementations is not just a pure set of lan-
guage instruments, but an advanced software environment which will be able
to deal with FL metrics, metatext normalisations, discovering weak solutions,
supporting testing and debugging. Creation of metrics deriving from the concept

16 An algebraic structure is a lattice if and only if there are two binary operations in the set
V that are linked by the absorption low [9]. In the complete metatext execution tree, there are
no such operations. Once a root is with ∧ operation considered as the meet, there is no join
and vice-versa.

272 Jerzy Leyk

of CoMET, may be the next step towards metatext quality measurement and
verification. I hope the paper will also encourage to develop frame technology
software for non-software application domains.

6. Acknowledgments

I want to thank Stan Jarzabek for his valuable feedback on the idea of nor-
malised frame language presented in this paper and the impact of FL foundation
oriented research on practical FL implementations.

References

Basit, H. A., Jarzabek, S., Data Mining Approach for Detecting Higher-level Clones
in Software, “IEEE Transactions on Software Engineering”, vol. 36, no. 4, July/Au-
gust 2009, pp. 497–514.

Bassett, P. G., Framing Software Reuse: Lessons from the Real World, Yourdon Press,
Prentice Hall, 1997.

Diestel, R., Graph Theory, Springer-Verlag, Berlin 2005.

Framework for Software Product Line Practice, Version 5.0, Software Engineering Insti-
tute, Carnegie Mellon, available at: http://www.sei.cmu.edu/productlines/frame_re-
port, as of 2014–06–30.

Jarzabek, S. and Zhang, H., XML-based Method and Tool for Handling Variant Requ-
irements in Domain Models, “Proceedings of the 5th International Symposium on
Requirements Engineering”, RE’01, Toronto 2001, pp. 166–173.

Holmes, Ch., Evans, A., A review of Frame Technology, University of York, 2003, available
at: http://www.cs.york.ac.uk/ftpdir/reports/YCS-2003–369.pdf, as of 2010–06–30.

Karp, P., The Design Space of Frame Knowledge Representation Systems, “Technical
Note 520”, Artificial Intelligence Center, SRI International, 1992, available at:
http://www.ai.sri.com/pub_list/236, as of 2014–06–30.

Leyk, J., Frame Technology Applied in the Domain of IT Processes Job Control, “Advanced
Information Technologies for Management – AITM 2011: Intelligent Technologies
and Applications”, eds. J. Korczak, H. Dudycz, M. Dyczkowski, Research Papers
of Wroclaw University of Economics no. 206, Wrocław 2011, pp. 96–107.

Maclane, S., Birkhoff, G., Algebra, The Macmillan Company, New York 1967.

273Normalised Frame Language – towards a Complete Metatext Execution Tree...

Sauer, F., Metadata driven multi-artifact code generation using Frame Oriented Program-
ming, Position Paper, OOPSLA 2002 Workshop on Generative Techniques in the
context of Model Driven Architecture, November 4–8, 2002, available at: http://
www.volantec.biz/metadata-driven.pdf, as of 2014–06–30.

XVCL: A Tutorial, http://xvcl.comp.nus.edu.sg/xvcl_tutorial.php, Singapore, 2010.

* * *

Znormalizowany język ramek i pełne drzewo realizacji metatekstu

Streszczenie: Koncepcja ramek jako instrumentów poznawczych modelujących
rzeczywiste sytuacje znana jest także w inżynierii oprogramowania. Języki do tworzenia
ramek i ich zastosowania generujące podobne, lecz różne wyniki końcowe datuje się
na połowę lat 80. XX w. W artykule przedstawiono kilka teoretycznych podstaw tego
rodzaju języków opartych na implementacjach zrealizowanych w praktyce. Zdefinio-
wany został znormalizowany język ramek wraz ze szczegółowym przedstawieniem
jego środków językowych. Na tej bazie, przy wykorzystaniu teorii grafów, została roz-
winięta koncepcja CoMET – pełnego drzewa realizacji metatekstu. Znormalizowany
język ramek oraz koncepcja CoMET umożliwiają badanie i tworzenie rozwiązań, które
mogą mierzyć i porównywać właściwości metatekstów z różnych punktów widzenia.
Podstawy teoretyczne przedstawione w artykule mają na celu wsparcie inżynierów
oprogramowania w pełniejszym zrozumieniu natury języków ramek oraz zachęcenie
do tworzenia pełnych środowisk rozwojowych przeznaczonych także do dziedzin
innych niż rozwój oprogramowania.

Słowa kluczowe: języki ramek, technologia ramek, rozwój oprogramowania

