
Sylvie Trudel1, Alex TurcoTTe2

Combining Qualitative and Quantitative Software 
Process Evaluation: A Proposed Approach

Abstract
This paper presents a method that combines a qualitative assessment method 

based on CMMI to uncover improvement areas of an organization’s software process, 
and a quantitative approach to measure the software process productivity rate. The 
evaluation scope is first established: a list of projects and a list of CMMI key process 
areas to assess. The measurement of the productivity rate is obtained by measuring 
the functional size of the software developed and/or enhanced through projects, and 
then compared with the recorded project effort. The main reason for combining the 
approaches is to gain a deeper understanding of the organization’s software process 
by examining the software requirements artefacts, which reveals the weaknesses of 
the requirements engineering portion of the software process. As a proof of the con-
cept, a field trial of the combined method has been applied successfully in an organ-
ization developing financial trading systems.

Keywords: software process assessment, functional size measurement, COSMIC, 
software productivity, requirements defects

1. Introduction

Organizations developing software have been using best practices models for 
more than two decades as guides to help them improve their software process3. 
Applying practices from these best practices models would help software prac-
titioners to alleviate some, if not most, of the unwanted symptoms frequently 
reported in software engineering, such as budget overruns, schedule overruns, 
partially delivered functionalities, poor product quality, most likely leading 

1 Université du Québec à Montréal, Montreal, Canada, trudel.s@uqam.ca
2 Université de Sherbrooke, Longueuil, Canada, Alex.Turcotte@usherbrooke.ca
3 J. J. Marciniak, Software Engineering. A Historical Perspective, Encyclopedia of Software 

Engineering, Wiley 2002.



136 Sylvie Trudel, Alex Turcotte 

to deceived expectancies of their users on features, cost, schedule, and quality, 
and to dissatisfied customers.

These types of software process models apply quite well to large organizations, 
when they put in place a group responsible to develop, evolve, and communi-
cate their software process to all stakeholders, developers and managers alike. 
It may be otherwise for smaller organizations, often due to a lack of resources 
invested in software process improvement activities and support. Nonetheless, 
several software process models are freely available and as well as adaptation 
guidelines for small settings, either small projects (less than 15 staff members) 
or small organizations (less than 50 staff members)4.

1.1. Software Process Models and Frameworks

The Software Capability Maturity Model (SW-CMM) was among the first 
software engineering best practices models widely used5, providing a “staged” 
representation of five levels. Several years later, the Software Engineering 
Institute (SEI) issued and evolved a framework of models integrating practices 
related to software engineering, systems engineering, software acquisition and 
team work, called the Capability Maturity Model Integration for Development 
(CMMI–DEV)6. These models were developed by a team of experienced practi-
tioners combining their lessons learned throughout many years of working on 
large software projects, whether these projects were successful or not7.

CMMI–DEV provides a “staged” representation containing 22 process areas. 
Each level from 2 to 5 of the staged representation holds a subset of these pro-
cess areas. There is no practice in level 1. With the staged representation, these 
levels are called “maturity levels”:
• Level 1: Initial – characterized by an ad hoc or chaotic process;
• Level 2: Managed – characterized by a planned and executed process, fol-

lowing a written organizational policy;

4 S. Garcia-Miller, Lessons Learned from Adopting CMMI in Small Organizations, Software 
Engineering Institute 2005, http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=19950

5 M. C. Paulk, SW-CMM V1.1, Software Engineering Institute 1992.
6 The CMMI Product Team, Capability Maturity Model Integration © for Development, Ver-

sion 1.3, The CMMI Institute 2010, CMU/SEI-2010-TR-033.
7 M. B. Chrissis, M. Konrad, S. Shrum, CMMI Guidelines for Process Integration and Prod-

uct Improvement, Addison-Wesley 2003.



137Combining Qualitative and Quantitative Software Process Evaluation: A Proposed...

• Level 3: Defined – where the process is defined at the organizational level 
with tailoring guidelines, tools, and skilled people, and is applied consist-
ently across projects;

• Level 4: Quantitatively Managed – there are practices in place to establish 
and reach “quantitative objectives for quality and process performance and 
use them as criteria in managing projects”8;

• Level 5: Optimizing – characterized by a process that is being continuously 
improved based on quantitative feedback on process performance and prod-
uct quality.
CMMI–DEV also provides a continuous representation, having the same 22 

process areas but divided into four categories (Project management, Engineer-
ing, Process Management, and Support) instead of maturity levels. The selection 
of the CMMI representation depends on the goals set by given organizations. 
When an acquirer requires that a software contractor has its processes evalu-
ated at a certain CMMI maturity level, then this software contractor is likely 
to select the staged representation. When the software organization embarks on 
a process improvement journey to keep ahead of its competitors or to contin-
uously better serve its customers, then it might adopt either of the continuous 
representations and target those process areas where an assessment, or evalu-
ation, would reveal the most important weaknesses.

There also exist other software process frameworks available for small 
software organizations, depicting the software life cycle such as ISO/IEC TR 
291109, which is also available for free. It comprises an assessment guide10 
usable internally by an organization to evaluate areas of improvement of their 
software process.

Most organizations choosing CMMI, or any other software process or life-
cycle model, would be interested in evaluating the progress made over a period 
of time on their software process. The next section discusses some of the avail-
able assessment methods.

8 The CMMI Product Team, Capability Maturity Model Integration © for Development, Ver-
sion 1.3, The CMMI Institute 2010, CMU/SEI-2010-TR-033, p. 28.

9 ISO/IEC 29110–1, Software Engineering – Lifecycle Profiles for Very Small Entities (VSEs) 
– Part 1: Overview, ISO 2011; ISO/IEC 29110–2, Software Engineering – Lifecycle Profiles for 
Very Small Entities (VSEs) – Part 2: Framework and Taxonomy, ISO 2011.

10 ISO/IEC 29110–3, Software Engineering – Lifecycle Profiles for Very Small Entities (VSEs) 
– Part 3: Assessment Guide, ISO 2011.



138 Sylvie Trudel, Alex Turcotte 

1.2. Qualitative Software Process Evaluation

Software process evaluation methods were often developed to verify and 
report on the application of a best practices model in a given context. The SEI 
has developed the Standard CMMI Appraisal Method for Process Improvement 
(SCAMPI)11 with three classes of appraisals:
• Class A: has to be done by a lead appraiser (certified by the CMMI Institute), 

requires a rigorous caption of objective evidences for every practice evalu-
ated within the appraisal scope, and provides a rating according to the levels 
described in section 1.1, allowing the organization to benchmark its process 
maturity with its industry. A class ‘A’ SCAMPI may cost several tens of thou-
sands USD12, an amount inaccessible to most small software organizations.

• Class B: Similar to a class ‘A’ SCAMPI but without producing a rating. Less 
costly than class ‘A’ SCAMPI, it is intended for interim assessment between 
formal class ‘A’ SCAMPIs.

• Class C: requires less objective evidences than class ‘A’ or ‘B’ SCAMPI. It 
can be used internally by an organization to gain some insight in the pro-
cess maturity, without providing a rating, and without the obligation to be 
done by a certified lead appraiser.
The SCAMPI method provides insight of the software process. Only class ‘A’ 

provides a rating, which may be considered as a ‘quantitative’ evaluation. How-
ever, from a process improvement perspective, the rating has less importance 
than the findings in terms of strengths and weaknesses of the evaluated software 
process against CMMI. Since all three classes of SCAMPI provide such find-
ings, we consider SCAMPI as a qualitative type of software process evaluation.

ISO/IEC 29110–3 also provides insight of the software process, namely 
findings against the ISO/IEC 29110–2 framework. It is available for free and it 
targets specifically very small entities while being limited to the evaluation of 
the process.

Nonetheless, there are cases in the industry where organizations require 
more insights of the software process, such as having also insights of the software 
product, in order to have a broader perspective on what can be improved. In 
such cases, a combined evaluation method is desirable, one that would provide 

11 CMMI Institute, Standard CMMI Appraisal Method for Process Improvement (SCAMPI) 
Version 1.3b: Method Definition Document for SCAMPI A, B, and C, Technical Report, The 
CMMI Institute 2014.

12 F. Nguyen, Estimated Cost for SCAMPI Class A, B, or C Appraisal, 2010, http://cmmirocks.
ning.com/forum/topics/estimated-cost-for-scampi (08/07/2015).



139Combining Qualitative and Quantitative Software Process Evaluation: A Proposed...

findings about software products explaining some of the process-related find-
ings. We did publish such a method several years ago, called PEM for the Pro-
cess/Product Evaluation Method, including field trials13. The PEM uses ISO/IEC 
14598–514 as the evaluation method for the software product against product 
quality criteria – in its original version it was the ISO 9126 standard – and adds 
CMMI practices as an input to evaluate the software process at the same time. 
The PEM was intended for small organisations or small projects, where an eval-
uation could be conducted in less than a week, providing findings on both the 
software process and the software product. Field trials showed that the dual 
process-product evaluation was achievable also in larger settings, which require 
more effort to evaluate15.

The PEM has seven steps, the first six are extracted from ISO/IEC 14598–5, 
and the seventh was created as a value-added step for the evaluated organiza-
tion (see Figure 1). Steps 4 and 5 together constitute the execution of the evalu-
ation. Similar to a class B SCAMPI, the PEM does not provide a rating. Every 
observation must be supported by comments from participants in at least two 
different interviews or by comments made by one participant and supported by 
adequate documentation. In step 4, evaluators must review project documenta-
tion against process model practices but also against software quality attributes. 
Those quality attributes could come from those defined in ISO/IEC 9126, but any 
other set of quality criteria can be used, as long as they are adequately defined 
during step 2 (when a model is selected) and step 3 (when a list of questions is 
prepared). Project documentation is deemed inclusive to any type of informa-
tion required for the evaluation, such as architecture, requirements, design, 
code, test, project management, and any other documentation relevant within 
the evaluation scope. Confidentiality of the participants’ comments is enforced 
by a signed agreement from the evaluators, stipulating that only comments ade-
quately corroborated will be presented as observations, after being rephrased 
and approved by the participants themselves (steps 5 and 6).

13 S. Trudel, J. M. Lavoie, M. C. Paré, W. Suryn, PEM: The Small Company-dedicated Soft-
ware Process Quality Evaluation Method Combining CMMISM and ISO/IEC 14598, “Software 
Quality Journal” 2006, vol. 14, no. 1, pp. 7–23.

14 ISO/IEC 14598–5, Information Technology – Software Product Evaluation – Part 5: Pro-
cess for Evaluators, ISO 1998.

15 S. Trudel, J. M. Lavoie, M. C. Paré, W. Suryn, PEM: The Small Company-dedicated Soft-
ware Process Quality Evaluation Method Combining CMMISM and ISO/IEC 14598, “Software 
Quality Journal” 2006, vol. 14, no. 1, pp. 7–23.



140 Sylvie Trudel, Alex Turcotte 

Figure 1. The PEM Method
Source: S. Trudel, J. M. Lavoie, M. C. Paré, W. Suryn, PEM: The Small Company-dedicated Software 
Process Quality Evaluation Method Combining CMMISM and ISO/IEC 14598, “Software Quality 
Journal” 2006, vol. 14, no. 1, pp. 7–23.

If an organization needs to evaluate the quality of other outputs of its soft-
ware process, e.g. the requirements documents instead of the software code or 
design, then a different set of quality criteria would be needed since ISO/IEC 
9126 does not cover that aspect.



141Combining Qualitative and Quantitative Software Process Evaluation: A Proposed...

The objective of this paper is to present an adaptation to the PEM allowing 
the evaluation of process aspects against a best practice model, and the quality 
of a software product aspect, namely the requirements by means of measuring 
the functional size, hence, combining a qualitative approach with a quantitative 
one. The main hypothesis is that the findings from measuring the size would 
explain some of the process related findings, specifically for practices develop-
ing or using requirements documents.

2. Quantifying the Software Process Efficiency

Quantifying the efficiency of a process can be expressed in terms of the effort 
per size unit, which requires that the size of the process output be measured and 
then compared with the effort made during that process execution. By exten-
sion, quantifying the efficiency of a software process requires that the software 
size be measured and then compared with the effort made to produce the out-
put of that measured size16.

2.1. Measuring the Software Functional Size

The type of output to measure can be the software functional size, measured 
from functional requirements documents17. There are five standardized methods 
published by the International Organisation for Standardization (ISO): IFPUG18, 
NESMA19, FiSMA20, Mark-II21, and COSMIC22.

16 A. Abran, Software Metrics and Software Metrology, Wiley 2010.
17 ISO/IEC 14143–1, Information Technology – Software Measurement – Functional Size 

Measurement – Part 1: Definition of Concepts, ISO 2007.
18 ISO/IEC 20926, Software and Systems Engineering – Software Measurement – IFPUG 

Functional Size Measurement Method 2009, ISO 2009.
19 ISO/IEC 24570, Software Engineering – NESMA Functional Size Measurement Method 

Version 2.1 – Definitions and Counting Guidelines for the Application of Function Point Analy-
sis, ISO 2005.

20 ISO/IEC 29881, Information Technology – Systems and Software Engineering – FiSMA 1.1 
Functional Size Measurement Method, ISO 2010.

21 ISO/IEC 20968, Software Engineering – Mk II Function Point Analysis – Counting Prac-
tices Manual, ISO 2002.

22 ISO/IEC 19761, Software Engineering – COSMIC: A Functional Size Measurement Method, 
ISO 2011.



142 Sylvie Trudel, Alex Turcotte 

The Common Software Measurement International Consortium (COSMIC) 
software functional size method (FSM) is the only published standard being of 
the second generation of FSM methods. The COSMIC measurement manual is 
available for free and can be downloaded from the COSMIC organisation web-
site in 13 different languages23. The COSMIC method can be used to measure 
the software produced as one of the outputs of a software project, i.e. the output 
corresponding to functional requirements. The COSMIC method measurement 
process has three phases:
1. Phase 1 – the measurement strategy, is completed at the beginning of a meas-

urement activity, where the measurement purpose is determined along with 
the measurement scope, software layers and level of decomposition, func-
tional users, and the FUR level of granularity.

2. Phase 2 – the mapping phase, is when data is extracted from the Functional 
User Requirements (FUR) to identify functional users, triggering events, 
functional processes, data groups manipulated by these functional processes, 
and their related data movements. There are four types of data movements: 
Entry (E), eXit (X), Read (R), and Write (W).

3. In phase 3, the measurement phase, data movements are counted. It uses 
the COSMIC Function Point (CFP) as its unit of measure, where one CFP 
represents a data movement of one data group by one functional process, 
within a piece of software to measure. The functional size of a piece of soft-
ware is the total number of data movements.
Phases 2 and 3 can be done iteratively until the measurement scope has been 

completed. Figure 2 provides an overview of the generic software flow of data 
from a functional perspective, where data movement types are shown.

The COSMIC method can measure the size of new functionalities as well 
as the size of modified functionalities; other methods measure the size of new 
functionalities but can only estimate the size of modifications, mainly by apply-
ing a percentage of the original size of the functionality being modified. Since 
it is common in the industry that a software project scope comprises new and 
modified functionalities, the COSMIC method has a clear advantage over the 
other methods when precision is required.

23 A. Abran et al., The COSMIC Functional Size Measurement Method, Version 4.0.1, Measure-
ment Manual, The COSMIC Group 2015, http://www.cosmicon.com/dl_manager4.asp?id=532



143Combining Qualitative and Quantitative Software Process Evaluation: A Proposed...

Figure 2. Generic Software Flow of Data from a Functional Perspective24

Source: the authors’ own work.

2.2. Identifying Defects in Functional Requirements

In previous work, we used the COSMIC method as a means to identify defects 
in software requirements documents while measuring the software functional 
size25. As measurement is made by going through the FUR, a deep understand-
ing of these FUR is obtained during phase 2 of the measurement process. While 
measuring a piece of software, ambiguities and inconsistencies can be identi-
fied, such as:
• Unclear or missing functional users;
• Unclear or missing triggering events;
• Unclear or missing functional processes;
• Unclear or missing data groups;
• Unclear or missing data movements.

These ambiguities and inconsistencies can all be considered as defects in the 
FUR. The likely consequences of these defects are incomplete, wrong or at least 

24 A. Abran, Software Metrics and Software Metrology, Wiley 2010.
25 S. Trudel, Using the COSMIC Functional Size Measurement Method (ISO 19761) as a Soft-

ware Requirements Improvement Mechanism, Thesis, École de Technologie Supérieure 2012.



144 Sylvie Trudel, Alex Turcotte 

imprecise measurement results, but more importantly misunderstandings from 
the software developers leading to higher project costs as rework is likely to 
be required.

Desharnais and Abran proposed a quality rating of the FUR26 to help under-
stand the precision of a measurement result. These quality rates range from ‘a’ 
to ‘e’, where ‘a’ means all relevant information for measurement is clear, con-
sistent, and available, and ‘e’ means “the functional process is not mentioned 
in the artefacts but is implicit”. In other words, at level ‘e’ functional processes 
being the basis of measurement have to be guessed, which cannot provide a pre-
cise measurement result when poor quality FUR are to be used. Nonetheless, 
assumptions can be made when a defect is found in the requirements impacting 
measurement results. The COSMIC Group has issued the Guideline for assur-
ing the accuracy of measurements27, guiding measurers to detect defects in the 
FUR and identifying appropriate assumptions for measurement.

Previous research also found that defects in the FUR are likely to cause 
measurement errors, especially with inexperienced measurers28. For that rea-
son, measurement results made by inexperienced measurers should be verified 
by a certified and experienced measurer who would be able to identify meas-
urement errors and also identify defects in the FUR for which the measurement 
results should be adjusted with adequate assumptions29.

2.3. Quantifying the Software Process Productivity Rate

Once the functional size of the software delivered by the projects has been 
measured, it can be compared with the project effort to obtain a productivity 
rate expressed in staff-hours per CFP. However, before analyzing this data, it is 

26 J.-M. Desharnais, A. Abran, Assessment of the Quality of Functional User Requirements 
Documentation Using Criteria Derived from a Measurement with COSMIC–ISO 19761, Inter-
national Workshop on Software Measurement – IWSM 2010, Stuttgart, November 2010, 
pp. 481–496.

27 A. Abran et al., Guideline for Assuring the Accuracy of Measurements, Version 1.0, The 
COSMIC Group 2011, http://www.cosmicon.com

28 E. Ungan, O. Demirörs, Ö. Ö. Top, B. Özkan, An Experimental Study on the Reliability of 
COSMIC Measurement Results, in: Software Process and Product Measurement, Springer, Ber-
lin Heidelberg 2009, pp. 321–336; S. Trudel, A. Abran, Functional Size Measurement Quality 
Challenges for Inexperienced Measurer, in: Software Process and Product Measurement, Inter-
national Conferences IWSM 2009 and Mensura 2009 Amsterdam, 4–6.11.2009, proceedings 
vol. 5891, Springer Science & Business Media, pp. 157–169.

29 A. Abran et al., Guideline for Assuring the Accuracy of Measurements, Version 1.0, The 
COSMIC Group 2011, http://www.cosmicon.com



145Combining Qualitative and Quantitative Software Process Evaluation: A Proposed...

essential to understand the quality of both data types: measurement results and 
effort. Measurement result quality has been discussed in the previous section and 
should have been verified at that point. Quality assurance of effort data should 
be part of the qualitative portion of the evaluation, as quality of effort data is of 
primary importance in project cost management and reporting.

Once the quality of effort and FSM data have been assured, the productivity 
rate can be analyzed, benchmarked30, and reported. The analysis of the produc-
tivity rate should go beyond establishing the rate and provide a broader view 
of software process.

3.  Combining Qualitative and Quantitative Software 
Process Evaluations

Most methods evaluating a software process for improvement are assessing 
the software practices against a given model by interviewing project partici-
pants and by reviewing artefacts issued from that process, searching evidences 
that the model practices are implemented. Some issues specifically about the 
requirements engineering process may be overlooked, such as inconsistencies 
of the quality of requirements artefacts, even when all projects are using the 
same requirements document template. The form may look consistent, but the 
quality of the content is not.

When the functional size of several projects is measured during a software 
process assessment, inconsistencies across projects requirements artefacts and 
their quality rating can be identified. These inconsistencies need to be identified 
during the evaluation, before the draft report is released for review to evalua-
tion participants. We found that an appropriate combination of measurement 
and assessment can be done as part of the “Execution of the Evaluation” (steps 
4 and 5 of the PEM, from Figure 1). Our approach proposes a new step “4b” 
between steps 4 and 5, where step 4 becomes step “4a” (see Figure 3). In that 
case, the review for the requirements engineering process outputs is used as 
input for the COSMIC FSM method – the de facto selected FSM method. Identi-
fied defects, such as inconsistencies across projects, will lead to findings related 

30 International Software Benchmarking Standards Group (ISBSG), Development and En-
hancement Data Set 2015, Release 13, Obtained from http://www.isbsg.org



146 Sylvie Trudel, Alex Turcotte 

to software requirements engineering practices. Steps 4a and 4b can be exe-
cuted in parallel and iteratively.

Figure 3. Proposed Added Step to Combine Qualitative and Quantitative Approaches
Source: adapted from Abran A., Software Metrics and Software Metrology, Wiley 2010.

Moreover, since it is quite frequent that organizations are having issues 
with their estimation process, establishing the productivity rate (from efficiency 
data analysis in step 4b) for the subset of evaluated projects is likely to provide 
improvements of the estimation process, such as integrating an estimation model 
to compare traditional project estimates with the results from that model. Also, 
in the context of a software process evaluation, this productivity rate analysis 
should provide insights to the requirements engineering process, linking the 
productivity rate and relevant benchmarking results to process related findings.

4. Field Trial in the Financial Trading Software Domain

A proof of the concept for applying the combined evaluation was required 
in order to identify the aspects of the method that would be adequate and those 
that would need improvements or adjustments. An organization accepted that 
our method be applied on their software process. Its management asked that 



147Combining Qualitative and Quantitative Software Process Evaluation: A Proposed...

the organization’s name remained confidential while we were granted the per-
mission to publish some of the evaluation results.

4.1. Analysis of the Evaluation Requirements (Step 1)

The combined qualitative and quantitative evaluation of the software process 
has been applied in this software organization of 100 staff members, developing 
trading software for the derivatives market. Their different systems are “rec-
ognized as among the most rapid and efficient in their field”, and are deployed 
in several derivatives exchanges in Europe and North America.

The organization has a documented process, applying a waterfall lifecycle. 
They are divided into three groups: architecture, development, and quality con-
trol. Most of their projects are run with less than 10 staff members.

The organization’s initial need was to understand and identify the factors 
behind the budget overruns on its larger projects, which should lead to improv-
ing the process. Unofficially, managers also needed to know the relative costs of 
their software process, since their customers mentioned several times the high 
cost of software projects. These needs were set as objectives for the evaluation. 
The management also required that interview effort be less than 60 staff-hours, 
including the evaluator and participants.

4.2. Specification of the Evaluation (Step 2)

The evaluation scope comprised the following axis:
1. Organizational units: restrain the evaluation to one specific business domain, 

representing projects for two major clients.
2. Software practices: within CMMI, consider all process areas from matu-

rity levels 2 and 3, except Supplier Agreement Management (not applicable 
in this organization), Organizational Training (declared out of scope), and 
Decision Analysis and Resolution (we knew these practices were not applied).

3. Software projects: six (6) projects were to be evaluated and measured, three (3) 
projects considered as large projects by this organization (over 500 staff-
days of effort), and three (3) projects of a regular size (less than 500 staff-
days of effort). Projects were to be implemented in 2014 or 2015 to ensure 
that they represent the current state of the software process.



148 Sylvie Trudel, Alex Turcotte 

4.3. Design of the Evaluation (Step 3)

A detailed evaluation plan was established to describe the evaluation method, 
identify the required personnel, and plan for their availability and preparation. 
A total of 21 participants to interview were identified, with at least two partic-
ipants per role. A questionnaire was developed to ensure that all the selected 
process areas would be covered. The detailed evaluation plan also linked appro-
priate process areas with each role.

The questionnaire aimed to assess the level of achievement of objectives from 
the selected CMMI–DEV process areas by the organizational software process, 
as applied through their projects. When findings were not sufficient or contra-
dictory, projects artefacts were examined to help determine an achievement 
level, represented using a scale adapted from the SCAMPI method containing 
the following levels for every process area:
1. TA: Totally Achieved;
2. LA: Largely Achieved;
3. PA: Partially Achieved;
4. NA: Not Achieved;
5. NY: Not Yet [performed].

The evaluation plan initially proposed holding a kick-off session to present 
the evaluation, its objectives and scope, and other important information to all 
the participants, but the management decided not to hold the kick-off, replacing 
it by an introductory email. A two-page summary document was then written 
providing this information to the participants ahead of the interview sessions.

4.4.  Interviewing the Project Participants and Reviewing Project 
Documentation (Step 4a)

The evaluation was realized by conducting interviews with the project par-
ticipants. The interviews were performed as per the evaluation plan. However, 
we were able to interview 18 participants out of the 21 planned initially. Confi-
dentiality of the interviews was assured by the evaluator and reinforced by the 
management. Interview effort was 50 staff-hours, complying with one of the 
management’s needs.



149Combining Qualitative and Quantitative Software Process Evaluation: A Proposed...

4.5.  Measuring the Software Functional Size and Process Efficiency 
(Step 4b)

The software functional size of the projects was measured using the COS-
MIC method while reviewing project documentation, namely the requirements 
documents. In one project, the ambiguities of requirements led the measurer 
to confirm measurement results by examining the source code. A certified and 
experienced measurer verified the measurement results to ensure accuracy for 
all six projects. Effort data was obtained from the organisation project database. 
Several analyses have been done with these data to meet management needs 
stated in 4.1. A small portion of analysis results are shown in 4.8.

4.6. Reviewing and Reporting Observations (Step 5)

The initial observations were subsequently presented to the participants for 
validation. This step aimed to ensure that the interpretation of their affirmations 
and that the confidentiality of the interviews was preserved. This step also helped 
validate that the final findings accurately reflected the applied software process.

4.7. Conclusion of the Evaluation (Step 6)

A final report was prepared, presenting the combined results from the qual-
itative and the quantitative evaluations. The observations related to the qualita-
tive evaluation were grouped by the corresponding CMMI process area category. 
Other observations were derived from the functional size measurement activ-
ities, such as inconsistencies of the requirements engineering practices. For 
each group of observations, a set of recommendations was proposed in order 
to improve the software process.

4.8. Measurement Results and Outcomes

The results from the measurement (step 4b) are shown in Figure 4, where 
staff-effort has been compared with the functional size for all six projects within 
the evaluation scope.

The qualitative evaluation of the project with the highest relative effort per 
CFP showed that this project had been started then stopped three times before 
being completed, as well as having changed the key personnel such as the 
project manager, architect, and team leader, and particularly having unclear 



150 Sylvie Trudel, Alex Turcotte 

requirements. These facts can explain its higher relative effort and can classify 
the project as an outlier. The participants described the project with the lowest 
relative effort per CFP as “a project that went exceptionally well”, explaining the 
rare clarity of the requirements and exceptional availability of the customer. The 
other four projects were executed following the organisational standard process.

y = 53.5x + 428.5 
R  = 0.8791 

0 

2000 

4000 

6000 

8000 

10000 

0 50 100 150 200 

Effort
(hours)

Functional size (CFP)

Figure 4.  The Initial Productivity Model with the Functional Size and Effort from All 
Six Projects

Source: the authors’ own work.

Considering the first two projects as exceptions, we were curious to analyse 
the effect of their suppression on the productivity model (see Figure 5). Despite 
having the data from only four projects, the correlation factor has the highest 
possible value of 1, which is unusual from our experienced viewpoint.

y = 53.2x + 514.1 
R  = 1 

0 

2000 

4000 

6000 

8000 

10000 

0 50 100 150 200 

Effort
(hours)

Functional size (CFP)

Figure 5.  The Comparison of Functional Size and Effort for the Remaining 
Four Projects

Source: the authors’ own work.



151Combining Qualitative and Quantitative Software Process Evaluation: A Proposed...

The management needed to understand budget overruns and the evalua-
tion provided answers that an algorithmic method based on COSMIC function 
points seems more efficient than their traditional internal expert judgment esti-
mation method. The correlation factor, despite having the data from only 6 pro-
jects, was sufficiently high for the management to adopt the measurement of 
software functional size, maintain the estimation model, and apply this model 
in the upcoming projects’ estimation.

During the measurement and analysis step (4b), new process related find-
ings were identified as a result of analysing the measurement and benchmark-
ing results. As an example, the benchmarking data showed the productivity rate 
significantly higher than other organizations’ in a similar context: a comparison 
with similar industry data showed that the variable cost was at least twice the 
median relative effort of their industry31. This led the evaluator to deepen the 
qualitative analysis of the process, revealing consistent waste within require-
ments engineering practices that could be eliminated with a small amount of 
effort. The confirmation of a higher relative cost led the management to seriously 
consider process improvement recommendations from the evaluation report, 
as it was linked to one of the evaluation objectives.

5. Discussion

This paper has discussed an adaptation of the PEM to combine qualitative 
and quantitative evaluation of the software process and the software require-
ments. CMMI is used as an input for the qualitative aspect while the COSMIC 
FSM method is used as an input for the quantitative aspect.

Several benefits have been observed from the field trial:
1. Measuring the functional size of projects implicitly provided a review of func-

tional requirements quality, which would probably have been overlooked 
under a simple qualitative software process assessment.

2. Quantitative software process measurement enabled relations with some of 
the findings from the qualitative assessment while providing sound infor-
mation to the management.

31 S. Trudel, A. Abran, Functional Size Measurement Quality Challenges for Inexperienced 
Measurer, in: Software Process and Product Measurement, International Conferences IWSM 
2009 and Mensura 2009 Amsterdam, 4–6.11.2009, proceedings vol. 5891, Springer Sci-
ence & Business Media, pp. 157–169.



152 Sylvie Trudel, Alex Turcotte 

3. A preliminary estimation model was obtained, which seems more reliable 
than the current organization’s technique to estimate projects.

4. The evaluation required effort was of an acceptable level for a small organ-
isation.
These benefits are encouraging in pursuing the combination of qualitative 

and quantitative evaluations.

6. Future Work

ISO/IEC 14598–5 has since been replaced by ISO/IEC 2500032, known as the 
Systems and Software Quality Requirements and Evaluation (SQuaRE). Adap-
tation of the PEM to SQuaRE would be required to keep it up to date with the 
current standard. We also intend to formalize adaptations of inputs to the eval-
uation method where an evaluator could use a quality model to assess a specific 
aspect of the product quality, whether the model contains quality attributes for 
the software code or is using a functional size method to characterize quality 
aspects of the software requirements, as used in this paper. As part of this work, 
provisions can be made to ensure the compliance of the resulting method with 
ISO/IEC 1550433. Moreover, it could be beneficial to widen the scope of meas-
urement within the method, not limiting this measurement to the functional 
size by having a larger coverage. We also plan to include customer satisfaction 
assessment results to obtain a complete, 360 degrees type of assessment of the 
software process.

It could be useful to correlate productivity measurement with an evaluated 
CMMI maturity level. But measuring that maturity level is costly and would 
defeat the purpose of keeping the method affordable to small organisations.

32 ISO/IEC 25000, Systems and Software Engineering – Systems and Software Quality Re-
quirements and Evaluation (SQuaRE) – Guide to SQuaRE, ISO 2014, http://www.iso.org

33 ISO/IEC 15504–4, Information Technology – Process Assessment – Part 4: Guidance on 
Use for Process Improvement and Process Capability Determination, ISO 2004, http://www.
iso.org



153Combining Qualitative and Quantitative Software Process Evaluation: A Proposed...

References

Abran A., Software Metrics and Software Metrology, Wiley 2010.

Abran A. et al., The COSMIC Functional Size Measurement Method, Version 4.0.1, Mea-
surement Manual, The COSMIC Group 2015, http://www.cosmicon.com/dl_man-
ager4.asp?id=532

Abran A. et al., Guideline for Assuring the Accuracy of Measurements, Version 1.0, The 
COSMIC Group 2011, http://www.cosmicon.com

Chrissis M. B., Konrad M., Shrum S., CMMI Guidelines for Process Integration and 
Product Improvement, Addison-Wesley 2003.

The CMMI Product Team, Capability Maturity Model Integration © for Development, 
Version 1.3, The CMMI Institute 2010, CMU/SEI-2010-TR-033.

The CMMI Institute, Standard CMMI Appraisal Method for Process Improvement 
(SCAMPI) Version 1.3b: Method Definition Document for SCAMPI A, B, and C, 
Technical Report, The CMMI Institute 2014.

Desharnais J.-M., Abran A., Assessment of the Quality of Functional User Requirements 
Documentation Using Criteria Derived from a Measurement with COSMIC–ISO 
19761, International Workshop on Software Measurement – IWSM 2010, Stutt-
gart, November 2010, pp. 481–496.

Garcia-Miller S., Lessons Learned from Adopting CMMI in Small Organizations, Soft-
ware Engineering Institute 2005, http://resources.sei.cmu.edu/library/asset-view.
cfm?assetid=19950

International Software Benchmarking Standards Group (ISBSG), Development and 
Enhancement Data Set 2015, Release 13, Obtained from http://www.isbsg.org

ISO/IEC 14598–5, Information Technology – Software Product Evaluation – Part 5: 
Process for Evaluators, ISO 1998.

ISO/IEC 14143–1, Information Technology – Software Measurement – Functional Size 
Measurement – Part 1: Definition of Concepts, ISO 2007.

ISO/IEC 20926, Software and Systems Engineering – Software Measurement – IFPUG 
Functional Size Measurement Method 2009, ISO 2009.

ISO/IEC 24570, Software Engineering – NESMA Functional Size Measurement Method 
Version 2.1 – Definitions and Counting Guidelines for the Application of Function 
Point Analysis, ISO 2005.

ISO/IEC 29881, Information Technology – Systems and Software Engineering – FiSMA 
1.1 Functional Size Measurement Method, ISO 2010.

ISO/IEC 20968, Software Engineering – Mk II Function Point Analysis – Counting 
Practices Manual, ISO 2002.

ISO/IEC 19761, Software Engineering – COSMIC: A Functional Size Measurement 
Method, ISO 2011.



154 Sylvie Trudel, Alex Turcotte 

ISO/IEC 29110–1, Software Engineering – Lifecycle Profiles for Very Small Entities 
(VSEs) – Part 1: Overview, ISO 2011.

ISO/IEC 29110–2, Software Engineering – Lifecycle Profiles for Very Small Entities 
(VSEs) – Part 2: Framework and Taxonomy, ISO 2011.

ISO/IEC 29110–3, Software Engineering – Lifecycle Profiles for Very Small Entities 
(VSEs) – Part 3: Assessment Guide, ISO 2011.

ISO/IEC 15504–3, Information Technology – Process Assessment – Part 3: Guidance on 
Performing an Assessment, ISO 2004.

ISO/IEC 25000, Systems and Software Engineering – Systems and Software Quality 
Requirements and Evaluation (SQuaRE) – Guide to SQuaRE, ISO 2014, http://
www.iso.org

ISO/IEC 15504–4, Information Technology – Process Assessment – Part 4: Guidance 
on Use for Process Improvement and Process Capability Determination, ISO 2004, 
http://www.iso.org

Marciniak J. J., Software Engineering. A Historical Perspective, Encyclopedia of Soft-
ware Engineering, Wiley 2002.

Nguyen F., Estimated Cost for SCAMPI Class A, B, or C Appraisal, 2010, http://cmmi-
rocks.ning.com/forum/topics/estimated-cost-for-scampi (08/07/2015).

Paulk M. C., SW-CMM V1.1, Software Engineering Institute 1992.

Trudel S., Using the COSMIC Functional Size Measurement Method (ISO 19761) as 
a Software Requirements Improvement Mechanism, Thesis, École de Technologie 
Supérieure 2012.

Trudel S., Abran A., Functional Size Measurement Quality Challenges for Inexperienced 
Measurer, in: Software Process and Product Measurement, International Conferences 
IWSM 2009 and Mensura 2009 Amsterdam, 4–6.11.2009, proceedings vol. 5891, 
Springer Science & Business Media, pp. 157–169.

Trudel S., Lavoie J. M., Paré M. C., Suryn W., PEM: The Small Company-dedicated Soft-
ware Process Quality Evaluation Method Combining CMMISM and ISO/IEC 14598, 
“Software Quality Journal” 2006, vol. 14, no. 1, pp. 7–23.

Ungan E., Demirörs O., Top Ö. Ö., Özkan B., An Experimental Study on the Reliability 
of COSMIC Measurement Results, in: Software Process and Product Measurement, 
Springer, Berlin Heidelberg 2009, pp. 321–336.


