HaroLD vaN HEERINGEN!, THEO PrRINS?, EDWIN VAN GORP?

Productivity Measurement of Agile Teams
— Overcoming the Issues with Non-Functional
Requirements

Abstract

Nowadays, as the software industry is slowly becoming more mature, software
measurement and performance measurement are becoming increasingly important.
Organizations need to know their productivity and competitiveness in software devel-
opment projects for various reasons. In many software development contracts, targets
are set for the suppliers to reach. These targets are based on software metrics like pro-
ductivity, speed of delivery and software quality. In order to check if the targets are
reached, it is necessary to measure the functional size of the software product that is
delivered and also the functional size of the software development project that is car-
ried out, as there is usually a difference between these two sizes. To be able to use the
functional size in contracts, it must be measured in an objective, repeatable, verifia-
ble and therefore defensible way. That being the case, the industry’s best practice is
to use an ISO/IEC standard for functional size measurement, e.g. Nesma, COSMIC
or IFPUG function points. However, these methods only measure the functional user
requirements from the total software requirements to be delivered. In activities like
project estimation and productivity measurement, the influence of the non-functional
requirements is expressed in the Project Delivery Rate (PDR) which is expressed in effort
hours per function point. If more than the average number of non-functional require-
ments need to be realized in a project (or more severe non-functional requirements),
the PDR used should also be higher. In the industry it is customary to set productivity
targets based on an average (or calibrated) influence of non-functional requirements
and this works quite fine in traditional software projects. In software development
projects that are executed in an agile way, this is not always the case. When working
agile, there are forces that influence the traditional way of performance measurement
significantly, resulting in a number of serious issues. In this paper these issues are
explained and a method to overcome these issues is proposed.

I METRI B.V. Schiphol-Rijk, the Netherlands, harold.van.heeringen@metrigroup.com

2 Sizing, Estimating & Control, Sogeti Nederland B.V,, Vianen, Nederland, theo.prins@
sogeti.com

3 Sizing, Estimating & Control, Sogeti Nederland B.V., Vianen, Nederland, edwin.van.
gorp@sogeti.com

118 Harold van Heeringen, Theo Prins, Edwin van Gorp

Keywords: agile development; story points, outsourcing, performance measure-
ment, functional requirements, Nesma, ISBSG, non-functional requirements, Agile
normalized size

1. Introduction

These days, more and more software development projects are carried out
in agile oriented approaches like Scrum or DSDM. Projects following an agile
software development method deliver software in an iterative way. The iterations
are usually called sprints. The main idea behind agile software development is
that short feedback loops enable the customer (users) to experience the prod-
uct sooner, which allows the requirements and solutions to evolve during the
execution of the project. As Scrum is the most dominant agile software devel-
opment method nowadays, this paper is primarily focused on this method and
the concepts and terminology of Scrum are used in the text.

1. The development of a specific set of requirements in a specific period of
time. Although executed in an iterative way, the project has a ‘goal’, and at
one point it is decided that the project is finished. The product owner con-
trols the project, making sure that the necessary functionality is delivered
within time and budget.

In traditional approaches, this type of development would be called a ‘new

development project’ or a ‘release’;

2. The continued development (evolving) of an application. In this situation
there is no definite duration or a specific set of user requirements. A year
is divided into X sprints of Y weeks and the team is continuously working
on the product backlog items the product owner deems the most important
until it is decided that the product does not need further maintenance (which
may be so in the far future).

In traditional approaches, this type of development would be called ‘main-
tenance’.

Productivity measurement of the contract type listed as number 1, is not signif-
icantly different in agile projects than in traditional projects. In both approaches,
the difficulty lies in measuring all functional changes properly in order to meas-
ure the actual project size.

The focus of this paper is on the contract type described under number 2.
A team is working for an indefinite period of time, which is divided into sprints

Productivity Measurement of Agile Teams — Overcoming the Issues with Non-Functional... 119

of 2, 3 or 4 weeks’ length each, on a product backlog. The product backlog is
prioritized in such a way that the product backlog items (PBI’s) with the highest
importance are planned to be delivered first. The PBI’s are also rated in story
points, which are assigned in team effort.

2. Productivity Measurement in Traditional Software Projects

Productivity measurement in traditional software development projects is
quite straightforward*. The customer and the supplier have to agree on a few
items beforehand, the most important being:

e Which (variant of which) size measurement method to use;

* Which performance metrics to use;

e Which activities are in scope and which activities are out of scope for the
performance measurement;

* Which are the benchmarks or targets to use per metric;

* Who is measuring, who is reviewing, how to deal with differences of opinion.

To give an example, let us look at a performance measurement contract
that a government agency and a supplier have used to measure the perfor-
mance in a specific Java development project with an indicative size of around
400 Nesma’® function points (FP). The items above were addressed in the fol-
lowing way:

e Size measurement: Estimated Nesma¢;
* Performance metrics:

— Productivity: PDR (h/FP);

— Functional Quality: Defects/FP Acceptance Test + 1st month production;

— Delivery Speed: FP per calendar month.

* Activities in scope: technical design, coding, programmer test, system test,
support acceptance test, project management, quality assurance;

4 M. Bundshuh, C. Dekkers, The IT Measurement Compendium, Estimating and Benchmark-
ing Success with Functional Size Measurement, Spinger, ISBN: 978-3-540-68187-8, p. 313.

5 ISO/IEC 24570:2005, Software Engineering — NESMA Function Size Measurement Method
Version 2.1, Definitions and Counting Guidelines for the Application of Function Point Analy-
sis, ISBN: 978-90-76258-19-5.

6 Early Function Point Counting, http:/nesma.org/themes/sizing/function-point-analy-
sis/early-function-point-counting/

120 Harold van Heeringen, Theo Prins, Edwin van Gorp

e Activities out of scope: functional design, delivery management, acceptance
test, implementation;

* Benchmarks targets: A relevant subset from the ISBSG repository New Devel-
opments & Enhancements’ (e.g. Java projects, Government, size between
300 and 500 FP)

— PDR: ISBSG subset median PDR;

— Defects/FP: ISBSG subset percentile 25%;

— Speed of delivery: ISBSG subset median PDR.

* The supplier measures the functional size, the customer reviews the size
measurement. The metrics can be audited by the customer periodically. Inde-
pendent third parties may be used to solve differences of opinion.

Because of the specific set of requirements and the fact that the goal of the
project is clear (to meet that specific set of requirements), the performance
measurement is pretty straightforward. As it is a Java development project for
a government agency, it is easy to select a proper subset from the ISBSG repos-
itory to set the targets and benchmarks for this project. If there are specific
non-functional requirements that are expected to have a significant influence
on the performance, the benchmarks and targets may need to be re-evaluated
and agreed upon.

After the project has finished, the project size is determined, the perfor-
mance metrics are calculated and it becomes clear if the performance targets
are met or not.

3. Why Are Agile Projects Different?

Most people in the software industry know the four main principles of the
agile manifesto®:
e Individuals and interactions over processes and tools;
* Working software over comprehensive documentation;
e Customer collaboration over contract negotiation;
* Responding to change over following a plan.

7 International Software Benchmarking Standards Group (ISBSG) New Developments & En-
hancements R13, released February 22015, www.isbsg.org

8 K. Beck, Manifesto for Agile Software Development, Agile Alliance 2001, retrieved
14/06/2010.

Productivity Measurement of Agile Teams — Overcoming the Issues with Non-Functional... 121

Although the items on the right of the word ‘over’ are still important, the
items on the left are considered more important.

In practice, an agile project can be described in the following general way:

A very important role is played by the product owner, who is a representa-
tive of the customer/user organization. This product owner needs to be knowl-
edgeable about the functionality of the product and the business value it offers
to the users. Also, the product owner needs to have a mandate from the customer
organization to make decisions and he/she needs to be committed to fulfill this
role. This means that he/she is able to devote the time needed to carry out the
role, this means that he/she is able to meet with the team when necessary, make
decisions when necessary and prioritize the backlog items by business value.

There is a product backlog available which lists the product backlog items iden-
tified by the product owner. These backlog items are either functional or non-func-
tional by nature. The effort needed to realize the product backlog items are
estimated by the team members using story points. Although many people in the
agile community think the story point measure is a size measure, it is in fact an
effort measure. It is a relative measure which gives an estimate of how many
hours the team thinks they need to spend on a particular product backlog item,
compared to a specific baseline backlog item to which a random number of
story points has been assigned. There is no standard approach to assigning story
points. Most teams identify the smallest product backlog item in the product
backlog and assign 1, 2 or 3 story points to it. All other backlog items are then
compared to this baseline backlog item and the number of story points assigned
to them reflects the effort the team needs to realize them, compared to the base-
line item. This method is absolutely subjective and probably not very repeata-
ble or verifiable.

Although story points are quite useful for sprint planning, as to decide which
product backlog items can be realized in a specific sprint, metrics based on
story points are completely useless for performance measurement. As there is
no standard for assigning story points (it is not a measurement activity), it is
quite easy to manipulate the number of story points realized in a sprint in order
to comply with the targets set. And since there is no reference point, it is easy
to manipulate the targets as well.

But still, organizations wish, and sometimes need, to measure the perfor-
mance of their suppliers, also in agile executed projects. In many cases usual
performance metrics are agreed upon, but instead of using a project or a release
as a basis for measurement, the performance measurement instrument is applied
to sprints. This means that for every sprint, the functional size delivered should

122 Harold van Heeringen, Theo Prins, Edwin van Gorp

be measured, the effort hours in scope need to be retrieved, the defects found
and resolved must be identified and the performance metrics should be calcu-
lated. Some issues, when not properly addressed, already arise here:

* Agile teams do not usually register defects. Especially not when they are
easy to resolve;

* Agile teams are multidisciplinary by nature. Sometimes it is hard for the
team members to register their effort on specific tasks. This is important,
however, as some tasks may be out of scope for performance measurement;

* Agile teams sometimes do not change the functional documentation in the
same sprint where the functionality is realized in. This makes it difficult
to measure the functional size of that sprint;

e According to the theory, at the end of each sprint, working software is deliv-
ered that could be implemented in a production environment. In practice, this
is not always the case and product backlog items are declared “not ready”
at the end of the sprint. As only functionality that is ready is measured, this
means a low size delivered in that sprint and possibly a relatively high size
delivered in the next sprint.

The product owner decides which product backlog items are the most impor-
tant. Here, the main issue comes to light. The product owner may decide that
mainly non-functional backlog items need to be realized in a specific sprint. As
functional size measurement methods only measure the functional user require-
ments, a size measurement of such a sprint would result in a few (or even zero)
function points. In these cases, the usual performance metrics result in bad val-
ues and the targets are not met for that sprint.

So, there is a number of issues when trying to implement the traditional per-
formance measurement instrument on the sprint level in agile contracts. Sum-
marized, these issues are as follows:

* The functional size of the delivered product can be hard to measure, either
because of underspecification, or because the documentation provided does
not reflect the status of the product after the sprint;

* The effort hours are not booked consciously on the right tasks in the effort
registration system, making it hard to define the number of hours spent on
the activities in scope of the performance measurement;

* During the sprint, system tests and acceptance tests are carried out, but
defects found and defects resolved are not logged appropriately, making it
hard to use the quality metrics;

Productivity Measurement of Agile Teams — Overcoming the Issues with Non-Functional... 123

* The functional size delivered in the sprint may be very low (or zero), seri-
ously affecting the performance metrics. Reasons for this could be (not lim-
itative) the following:

— The product backlog items turned out to be too big to deliver in the sprint
and were not ready;
— Illness of team members or other unplanned events that may have dis-
turbed productivity;
— Non-functional backlog items to realize in the sprint (e.g. improving per-
formance, security, code quality, et cetera).
These issues result in very uneven performance metrics over time. An exam-
ple of how this could look like is given below for the PDR. Let us say the follow-
ing data is measured for 8 sprints (table 1).

Table 1.
Sprint 1 2 3 4 5 6 7 8
Effort 345 389 367 412 365 375 390 401
Size (FP) 15 5 16 3 25 0 36 32

Source: the authors’ own study.
This would result in the following PDR per sprint (table 2).

Table 2.

Sprint 1 2 3 4 5 6 7 8

PDR (b/FP) | 23.0 77.8 22.9 137.3 14.6 n/a 10.8 12.5

Source: the authors’ own study.

In sprint 6 zero function points were realized, so it is impossible to deter-
mine the PDR in h/FP. Let us assume the target PDR for the specific project is
set to be 25.0 hours per function point, the performance graph would look like
that in figure 1.

The productivity realized shows a very uneven view. In the next paragraph
a method is proposed that should give better insight into the supplier’s capa-
bilities and performance.

An option to overcome the issues mentioned would be to only use the effort
hours spent on functional backlog items for the performance measurement. In
practice, it is very hard to identify these effort hours. Furthermore, this approach

124 Harold van Heeringen, Theo Prins, Edwin van Gorp

makes it easy to manipulate the performance measurement simply by booking
more hours on non-functional backlog items (assuming that there is no control
over the effort hours booked). Instead of normalizing the effort hours to match
the functional size, the method proposed in this paper is to normalize the func-
tional size to match the total effort.

160,0
140,0
120,0
100,0
80,0
60,0

40,0

20,0

0,0

3 4 5 6 7 8 9 10

—8- PDR (h/FP) Target PDR (h/FP)

Figure 1. PDR Actual vs. Target

Source: the authors’ own study.

4. The Method Proposed

The performance measurement method that is proposed in this paper is
to normalize the functional size in order to determine the functional size that
the team could have realized if they had not been instructed to realize any
non-functional backlog items.

This method enables organizations to use the standard methods and tech-
niques for performance measurement and benchmarking, while almost no extra
data or effort is necessary. The method is not totally objective, but possibilities
of manipulation (consciously or unconsciously) are very limited.

Productivity Measurement of Agile Teams — Overcoming the Issues with Non-Functional... 125

In order to carry out this normalization activity, one extra activity needs to be
performed. The Scrum team assigns story points to the backlog items, so the
number of story points that is realized in a specific sprint is known. Of each
of the sprint backlog items, the team should decide if the nature of the item is
(mainly) functional or non-functional. The ratio between the functional and the
non-functional story points is used to normalize the functional size.

Examples of functional backlog items could be: add a field to the database
table ‘User’ named ‘twitter username’, add a field to the ‘manage user’ screen
in which the administrator can enter the ‘twitter username’ and add a twitter
icon to the screen if the user has a ‘twitter username’, linking to the user’s twit-
ter page.

Examples of non-functional backlog items could be: improve the perfor-
mance of the batch job in order to have it run in under 2 hours, improve the
code quality of the application to be compliant with SQALE rating A° or upgrade
the development environment to the next version, because the supplier stops
supporting the current version soon.

The proposed method contains the following steps:

1. Measure the functional size of the functional sprint backlog items that were
ready at the end of a sprint using one of the mentioned ISO/IEC standards
for functional sizing;

2. Determine for all sprint backlog items that were ready at the end of the sprint
if these were functional or non-functional by nature. In case of a hybrid
nature, try to assess the functional/non-functional ratio;

3. Determine the number of story points that were assigned to the functional
backlog items that were ready at the end of the sprint;

4. Determine the total number of story points that were assigned to all backlog
items that were ready at the end of the sprint;

5. Calculate the Agile Normalized Size (ANS) using this formula:

ANS = (functional size / functional story points) * total story points

Example: In a sprint, five backlog items have been realized (see table 3).
Three of them are functional by nature, the other two are non-functional. The
functional size of the functional backlog items is measured using Nesma func-
tion point analysis.

9 J.-L. Letouzey, The SQALE Method for Evaluating Technical Debt, 3™ International Work-
shop on Managing Technical Debt, Zurich, 9-12.06.2012.

126

Harold van Heeringen, Theo Prins, Edwin van Gorp

Table 3.
Sprint X Nature Nesma FP Story points
BLI 1 Functional 4 4
BLI 2 Non-functional 0 6
BLI3 Non-functional 0 2
BLI 4 Functional 5 3
BLI 5 Functional 4 3
Total 13 18

Source: the authors’ own

study.

The ANS in this example is: (13/10) * 18 = 23.4 FP. The ANS represents the
equivalent of the functional size that could have been realized if only functional
backlog items had been included in the sprint.

In table 4, it is displayed that the ANS gives a more accurate view of the size
in sprints in which a lot of non-functional backlog items were realized. This is
especially obvious in sprint 4:

Table 4.

sprint | Fune.size | (o o e | pomte” | ANS
1 20 32 12 44 27.5
2 25 28 16 44 39.3
3 18 24 20 44 33
4 29 35 4 39 32.3
5 4 6 36 42 28
6 15 16 24 40 37.5

Source: the authors’ own study.

Advantages of this Method

The main advantage of this method is that the influence of non-functional
backlog items is reduced, while still an ISO/TEC standard method is used in order
to determine functional size. This productivity can then be compared with the
data that is measured using the same (type of) ISO/TEC standard method.

Productivity Measurement of Agile Teams — Overcoming the Issues with Non-Functional... 127

Disadvantages of this Method

The method is dependent on the story points assigned to the functional and
non-functional backlog items. Assigning story points, as indicated before, is
a highly subjective activity. However, as it is a necessary activity carried out
before the actual start of a sprint and because of the fact that the product owner
is usually present to oversee this activity, chances of the team manipulating the
assigning of the story points are considered to be small. Also, for the determina-
tion of the nature of backlog items, there is no standard approach, but usually it
should be easy to understand if backlog items are functional or non-functional by
nature. One other disadvantage of the method is that it is impossible to measure
the ANS if only non-functional backlog items are realized in a specific sprint. In
section V entitled ‘The Progressive Approach’, this issue is solved.

Effort Hours in Scope of Performance Measurement

It is always important to carefully consider the effort hours that should be
taken in scope of performance measurement. Usually, the benchmark used
determines the effort hours that are in scope, as you wish to compare apples
with apples. If, for instance, the benchmark used is based on a project lifecy-
cle excluding functional design and overhead hours, the effort hours spent on
these activities should be placed out of scope for the performance measurement.

Due to the fact that in the proposed method size is normalized, all activities
that are carried out to realize any backlog item, functional or non-functional,
have to be in scope for performance measurement. This would mean activities
like (not limitative):

* Design (functional and/or technical);

* Coding and programmer test;

* System test;

e Scrum master;

* Project support (for the Scrum master);
* Creating/adjusting documentation;

* Resolving defects;

* Research (proof of concepts, et cetera);
* Meetings / sessions.

Effort hours spent on the activities that are not directly related to realizing
backlog items are out of scope for performance measurement, e.g.:

128 Harold van Heeringen, Theo Prins, Edwin van Gorp

* Delivery management;
* Quality management;
* Project support (for the delivery management).
After the effort hours in scope have been determined, the productivity per
normalized FP can be calculated, see the example in table 5:

Table 5.
Sprint Fu?;.P;ize Agilseizréo(rrrlrléaft})ized Effort spent Hours/FP Hours/nFP
1 20 27.5 500 25 18.2
2 25 39.3 480 19.2 12.2
3 18 33 530 29.4 16.1
4 29 323 468 16.1 14.5
5 4 28 534 133.5 19.1
6 15 37.5 522 34.8 13.9

Source: the authors’ own study.

In figure 2 it is clear that the hours/nFP metric provides a more stable view
than the hours/FP metric. The fact that development of a new functionality is
not the most important goal is normalized into a situation where it is so.

800 =
1400

1330

e i i 1 B

s orursfn P

1 s

55.|;|-'In|: N

Figure 2. Hours/FP vs. Hours per nFP

Source: the authors’ own study.

Productivity Measurement of Agile Teams — Overcoming the Issues with Non-Functional... 129

5. The Progressive Approach

One of the aforementioned disadvantages of the proposed method is that it
is not possible to determine the normalized size for sprints in which no func-
tional backlog items have been realized. This can be obviated by using the pro-
gressive approach.

The progressive approach divides the sum of the functional sizes of all com-
pleted sprints by the sum of the functional story points of these sprints. The
result hereof is then multiplied with the sum of all story points of all completed
sprints. This approach makes it possible to take sprints into account in which
no functional backlog items have been realized. In table 6, the example used
earlier has been elaborated upon to explain the progressive approach:

Table 6.
279 0} 6}
E TE| =iz Szl B | 23 5| &=
5~ | 5% £3| 8 =@ £ » 3 2 £ 3
| SE | S8 8% Fa | SE ¢ | g2 | 5lent
£ | B3| 2% |22 SE|REG 2 | EE| 22|89
a. SN | 523|852 3z |BmoN| B 28| 25 |28 &
/) ST =~ @ Z & w H o | << e asy T L <& D&
1 20 32 12 44 27.5 18.2 500 | 27.5 18.2
2 25 28 16 44 39.3 12.2 980 | 66 14.8
3 18 24 20 44 33 16.1 | 1,510 | 99 15.3
4 29 35 4 39 32.3 145 | 1,978 | 1322 15
5 4 6 36 42 28 19.1 | 2,512 | 163.6 | 15.4
6 15 16 24 40 37.5 13.9 | 3,034 |199.2 15.2
7 0 0 41 41 n/a n/a | 3,546 [231.4 | 15.3
8 18 24 20 44 33 15.4 | 4,054 |264.3 15.3

Source: the authors’ own study.

The productivity expressed in hours/nFP and the productivity in hours
(cum)/ nFP (progressive) can be benchmarked against the traditional internal
and external hours/FP benchmarks, like for instance the ‘New Developments
and Enhancements’ Repository of the International Software Benchmarking
Standards Group!®.

10 International Software Benchmarking Standards Group (ISBSG) New Developments & En-
hancements R13, released February 2015, www.isbsg.org

130 Harold van Heeringen, Theo Prins, Edwin van Gorp

In figure 3, the figures from the example are shown. The benchmark PDR
in this example is set at 20 hours/FP.

8 1 -J-
oW f— e S ——
2
= ™
E T
& 'y
o
8 1 2 3 a 3 8 ' i

Sprint na.
=P=Hourl/Fl =l=HornFF =]l =B=Hourilcum) faFP (pragr)

Figure 3. The Progressive Apprach Results

Source: the authors’ own study.

The main benefits of the proposed method are clearly visible in sprints 5
(in which mainly non-functional backlog items were realized) and 7 (in which
only non-functional backlog items were realized).

Starting Points

In order to use the proposed method in the proper way, a number of start-
ing points have to be taken into account.

Productivity Measurement of Agile Teams — Overcoming the Issues with Non-Functional... 131

Effort Administration

The effort hours need to be booked in the effort administration in such a way
that it is possible to clearly identify the effort hours in scope and out of scope
of the performance measurement;

All effort hours spent on a project must be booked, also overtime;

Hours spent on other projects should not be booked on the project that is
being measured;

The team members need to understand the importance of an accurate and
correct time administration.

Documentation

* After each sprint the functional documentation should be made up-to-date

and it must be clear:

— which functionality was added in the sprint;

— which functionality was changed in the sprint and in which way;
— which functionality was deleted in the sprint.

Size Measurement

The effort hours need to be booked in the effort administration in such a way
that it is possible to clearly identify the effort hours in scope and out of scope
of the performance measurement.

Product Backlog and Sprint Backlog

The product backlog consists of functional and non-functional backlog items.
For each item it is known which type it concerns;

All items have been assigned story points to in a realistic way;

The product owner decides which product backlog items will be placed on
the sprint backlog of the sprints;

After each sprint it is decided which backlog items are ready (meet the defi-
nition of done!!) and which items are not (or not completely);

11 The definition of done is determined before the start of an agile project. Only if all char-

acteristics of that definition have been met, the item is considered ‘ready’.

132 Harold van Heeringen, Theo Prins, Edwin van Gorp

Data Collection

* After each sprint, a data collection form (DCF) must be filled in by the Scrum
master. In this DCF at least the following information must be filled in:
— the effort hours per activity;
— the backlog items declared ready and their associated type;
— the story points assigned to these backlog items.

Performance Measurement

* The productivity is determined using the method described above;

e The functional size, the data and the results of the productivity measurement
is stored in a central location;

e Standard reports are created in which the productivity measurement is
shown and compared to predefined internal and external benchmarks. Also
trends in productivity within the projects are reported.

6. Conclusions

More and more organizations adopt agile software development method-
ologies to deliver new functionalities in a faster way to their customer. In the
meantime, in the slowly maturing software industry, the need for productivity
measurement is becoming more and more important, especially in outsourcing
contracts. As long as the most important objective of agile projects remains deliv-
ering a new or changed functionality, the traditional productivity measurement
instruments can still be used in an effective way. In projects or contracts that
are mainly about evolving a certain application, without a specific end date or
a specific scope, productivity is sometimes hard to measure in ISO/IEC standards
for functional size measurements. The influence of non-functional requirements
can really impact productivity and the product owner (customer) is the only one
who can control this. Some attempts have been made in the recent time to nor-
malize the effort hours in order to capture only effort hours that were spent on
functional user requirements. However, in practice it seems impossible to do
so. Instead, this paper proposes normalizing functional size in such a way that
functional size is calculated that could have been realized in a sprint if the prod-
uct owner had only put functional backlog items on the sprint backlog. Whether

Productivity Measurement of Agile Teams — Overcoming the Issues with Non-Functional... 133

this method really is going to solve all the issues in productivity measurement
of agile projects still has to be proven.

References

Beck K., Manifesto for Agile Software Development, Agile Alliance 2001, retrieved
14/06/2010.

Bundshuh M., Dekkers C., The IT Measurement Compendium, Estimating and Bench-
marking Success with Functional Size Measurement, Spinger, ISBN: 978-3-540-
68187-8, p. 313.

Early Function Point Counting, http://nesma.org/themes/sizing/function-point-analy-
sis/early-function-point-counting/

International Software Benchmarking Standards Group (ISBSG) New Develop-
ments & Enhancements R13, released February 22015, www.isbsg.org

ISO/IEC 24570:2005, Software Engineering — NESMA Function Size Measurement
Method Version 2.1, Definitions and Counting Guidelines for the Application of
Function Point Analysis, ISBN: 978-90-76258-19-5.

Letouzey J.-L., The SQALE Method for Evaluating Technical Debt, 3™ International
Workshop on Managing Technical Debt, Zurich, 9-12.06.2012.

