
Donatien Koulla Moulla1, alain abran2, Kolyang3

An Architecture for Effort Estimation
of Solutions Based on Open Source

Abstract
Much software development is now conducted using other software products with

open licenses and using a cooperative and distributed model. However, most research
works on effort estimation of software projects have focused on conventional (tradi-
tional) projects with commercial licenses and are therefore not taking into account
the software built using Open Source. This paper proposes an architecture for effort
estimation of solutions based on Open Source.

Keywords: software effort estimation; Open Source estimation; estimation mod-
els; solutions based on Open Source

1. Introduction

Free/Open Source4 software is playing an increasing role in information
technologies in particular, and the world economy in general: much software
development nowadays is conducted using other software products with open
licenses and many are developed using a cooperative and distributed model. Many
software companies rely on Open Source Software to develop their customer

1 University of Ngaoundere, Department of Mathematics and Computer Science, Ngaoun-
dere, Cameroon; University of Maroua, Institute of Mines and Petroleum Industries, Maroua,
Cameroon, donatien.moulla@univ-ndere.cm

2 École de Technologie Supérieure, Department of Software Engineering and Informa-
tion Technology, Montréal, Canada, alain.abran@etsmtl.ca

3 University of Maroua, The Higher Teachers’ Training College, Maroua, Cameroon, ko-
lyang@cde-saare.de

4 The main difference between the free software and the Open Source movement remains
essentially ideological. The Free Software movement is above all ethical and philosophical,
based on knowledge sharing and mutual assistance, whereas the Open Source movement fo-
cuses on free software for their practical advantages. In this article, the term Free Software
and Open Source will be used interchangeably.

70 Donatien Koulla Moulla, Alain Abran, Kolyang

solutions and products and Open Source Software enables companies to develop
software systems at low cost5. However, most research works on effort estima-
tion of software projects focus on conventional (traditional) projects based on
proprietary, commercial licenses, and are therefore not taking into account
software built using Open Source. Research on effort estimation for the devel-
opment of Open Source software projects has become increasingly relevant
due to the increasing number of organizations and governmental agencies for
which Open Source software is included in their business strategy. Even though
the differences between decentralized method of Open Source software devel-
opment and software engineering practices have been debated6, some aspects
of Open Source development still need exploration. This provides the opportu-
nity to compare the model of development based on Open Source with other
models (traditional or proprietary)7. Because of the distributed and collabora-
tive nature of Open Source software projects, the development effort invested
in a project is usually unknown, even after the software has been released. Most
of the approaches that have been developed for effort estimation of software
development are based on proprietary development projects. The differences
in the organization of work and the voluntary participation of developers in Open
Source software projects justify why effort estimation of Open Source projects
may differ. Indeed, Open Source estimation is different from the conventional
one for several reasons: several assumptions of effort estimation models are
inherently not relevant in the open source development context. For instance,
COCOMO8 assumes a good management by both the software producer and
client, development following a waterfall-model and stability of the require-
ments during the whole process. However, in Open Source development, there
is no distinction between the producer and client, and with regard to the other
two assumptions (related to the model and requirements) the requirements are
neither written down9 nor constant over time, and Open Source software devel-

5 A. Ihara, A. Monden, K Matsumoto, Industry Questions about Open Source Software
in Business: Research Directions and Potential Answers, 6th International Workshop on Em-
pirical Software Engineering in Practice 2014, pp. 55–59.

6 S. Koch, Effort Modelling and Programmer Participation in Open Source Software Pro-
jects, Information Economics and Policy 2008.

7 Ibidem.
8 B. W. Boehm, Software Engineering Economics Prentice-Hall, New Jersey 1981.
9 P. Vixie, Software Engineering, in: Open Sources: Voices from the Open Source Revolution,

eds. C. DiBona et al., O’Reilly, Cambridge 1999.

71An Architecture for Effort Estimation of Solutions Based on Open Source

opment is closer to a spiral type of approach10, often described as micro-spirals11.
COCOMO II12 on the other hand, does not contain these assumptions but incor-
porates a more prototype-oriented type of development. The Function Points siz-
ing methods also do not contain any assumption concerning the process model
as it is technology-independent and taking the user’s viewpoint13. It is difficult
to conduct an Open Source Software project following the traditional software
development life-cycle models, such as the waterfall-model, because these mod-
els do not allow going back to a previous phase. In his book on Open Source
Software development – “The Cathedral and the Baazar”14 Eric S. Raymond
defines the traditional development models15 as the building of a cathedral with
central planning, tight organization and one process from start to finish while
the Open Source Software development model is defined as a bazaar model and
described as “a great babbling bazaar of differing agendas and approaches”.
Table 1 presents a number of issues relevant for the comparison between the
classical development and Open Source development.

These factors have an impact on the collection of effort data.
In spite of the significant importance of Open Source software for organiza-

tions and public administrations, there is a scarcity of research work on effort
estimation in this domain. In the field of Open Source, there is a key difficulty
related to research on estimation: while there are ample technical details avail-
able on the software itself (e.g. lines of code) there is little about the effort car-
ried out to implement functionalities (which, most of the time, have not been
measured). In Moulla et al.16, other variables (attributes) are analysed in rela-

10 B. W. Boehm, A Spiral Model for Software Development and Enhancement, “IEEE Com-
puter” 1988, vol. 21, no. 5, pp. 61–72.

11 T. Bollinger, R. Nelson, K. M. Self, S. J. Turnbull, Open Source Methods: Peering through
the Clutter, “IEEE Software” 1999, vol. 16, no. 4, pp. 8–11.

12 B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R. Madachy,
D. J. Reifer, B. Teece, Software Cost Estimation with COCOMO II, Prentice-Hall, New Jer-
sey 2000.

13 A. J. Albrecht, J. E. Gaffney, Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation, “IEEE Transactions on Software Engineer-
ing” 1983, vol. 9, no. 6, pp. 639–648.

14 E. S. Raymond, The Cathedral and the Bazaar, O’reilly & Associates, Cambridge 1999.
15 V. Tiwari, Some Observations on Open Source Software Development on Software Engi-

neering Perspectives, “International Journal of Computer Science & Information Technology”,
December 2010, vol. 2, no. 6.

16 D. K. Moulla, Kolyang, COCOMO Model for Software Based on Open Source: Application
to the Adaptation of TRIADE to the University System, “International Journal on Computer
Science and Engineering” 2013, vol. 5, pp. 522–527; D. K. Moulla, I. Damakoa, Kolyang, Ap-
plication of Function Points to Software Based on Open Source: A Case Study, Proceedings of

72 Donatien Koulla Moulla, Alain Abran, Kolyang

tion with effort and, therefore, the cost (the cost is strongly related to effort)
during the development of software solutions based on Open Source. The main
cost driver in software development projects is typically the effort and here,
like according to most researchers in this field of software effort estimation,
the scope of this paper is limited to effort estimation (cost estimation is a sig-
nificantly distinct topic with a lot of variables in addition to effort). More spe-
cifically, this paper proposes an architecture for effort estimation for software
projects based on Open Source.

Table 1. Relevant Issues for the Comparison between the Estimation Context
of a Classical Software Project and the Estimation Context of a Typical Open
Source Project

Estimation context of a classical software
project

Estimation context of a typical open
source project

There is a customer who:
 – Pays for the software (therefore,
he/she has some control over the
resources available, on the planning
and on penalties if the deliverables are
not produced, or of poor quality – for
instance, he/she can refuse to pay!).

 – States/documents his/her
needs/requirements.

 – Will use the functionality.
 – Wants the software for a specific date.

The customer:
 – Not known in advance. The customer is
some future random users. He/she can
participate, or not, in the development
of software.

 – Does not specify in advance the
functionality he/she wants and at what
level of detail.

 – Does not pay: therefore, he/she has
no control over the project.

 – Coordination activity is done by core-
developers.

There is a software development team:
 – With a project manager to plan and
control (for the budget and delivery
date).

 – Paid people (therefore, they are
‘accountable’ to their boss and
customer).

 – Paid people record their effort and work
time in the recording system to collect
historical data for management
purposes.

 – Classical effort estimation models are
designed in this context.

The Open Source Software developers’
context:
 – OSS may be supported by people
all over the world. The developers
are users of the software. They are
not known in advance. Generally,
there is no formal project management
regime, budget or schedule.

 – The motivations to contribute
to OSS development are: improve
programming skills; the code for
a project is intellectually stimulating
to write, enhance professional status,
enhance reputation in the OSS
community, etc.

the Joint Conference of the International Workshop on Software Measurement and the In-
ternational Conference on Software Process and Product Measurement, Rotterdam 2014.

73An Architecture for Effort Estimation of Solutions Based on Open Source

Estimation context of a classical software
project

Estimation context of a typical open
source project

 – The frequency of participation when
all work is volunteered is influenced
usually by work-related needs.

 – There is no formal project manager,
so the customer or manager does
not have any control over the
volunteers.

 – There is no formal document for
requirements.

 – Volunteers make some commitments
and these commitments are usually
monitored/recorded by a versioning
system, mailing lists, a bug-tracking
system, etc.

Source: the authors’ own study.

This paper is structured as follows: section 2 presents the studies related
to existing software effort estimation models, in particular to the modelling of
the effort in Open Source software projects and those based on Open Source,
and studies related to the adaptation of the software based on Open Source soft-
ware and reused software. Section 3 presents the proposed architecture. Sec-
tion 4 concludes the work and suggests directions for future work.

2. Related Works

This section presents the studies related to the existing software effort esti-
mation models, especially to the modelling of the effort in Open Source soft-
ware projects and those based on Open Source and, on the other hand, to the
adaptation of the software based on Open Source software and software reuse.

The most known model in the effort estimation literature is probably the
COCOMO model17. This model proposes an algorithmic formula for effort esti-
mation based on software size, initially measured in lines of code. In response
to practitioners’ difficulties in estimating reasonably well the SLOC (Source
Lines Of Code) before a project is well under way, new models have been devel-
oped that do not use SLOC as the primary input. In 1979, Allan Albrecht showed

17 B. W. Boehm, Software Engineering Economics Prentice-Hall, New Jersey 1981.

74 Donatien Koulla Moulla, Alain Abran, Kolyang

his interest in general in the productivity measurement problem in the systems
development, and created the function points method as an alternative to SLOC
in estimation models18. There are now five different functional size measurement
methods (COSMIC, IFPUG, NESMA, FiSMA and Mk II Function Points Analy-
sis) recognized by the International Standards Organization (ISO).

It is interesting to identify and estimate before using OSS how much effort
will be required to make changes and to integrate. There are many factors to be
taken into account when choosing to develop on the basis of Open Source soft-
ware, such as the size of the functionality to be implemented, software quality and
software productivity. In the Open Source context, code quality is a fundamental
design principle19: the quality is a direct consequence of architectural design deci-
sions20. More open governance leads to higher design quality. More governance
in Open Source projects increases the development effort21. However, in Open
Source software estimation, maintenance effort is lower than in the proprietary
development context due to a higher quality of code22. The maintenance effort of
Open Source applications may not show a similar increasing trend over time23.

In software development, productivity is most often denoted by the relation of
an effort measure to an output measure, using either lines-of-code or, preferably
due to the independence from the programming language, in function points24.

18 A. J. Albrecht, Measuring Application Development Productivity, IBM Application Devel-
opment Symposium, Monterey, October 1979, pp. 14–17.

19 E. Capra, C. Francalanci, F. Merlo, The Economics of Community Open Source Software
Projects: An Empirical Analysis of Maintenance Effort, “Advances in Software Engineering”
2010; I. Stamelos, L. Angelis, A. Oikonomou, G. L. Bleris, Code Quality Analysis in Open
Source Software Development, “Information Systems Journal” 2002, vol. 12, no. 1, pp. 43–60.

20 J. Asundi, R. Kazman, M. Klein, An Architectural Approach to Software Cost Modeling,
Second International Workshop on Economics-driven Software Engineering Research, Lim-
erick 2000.

21 E. Capra, C. Francalanci, F. Merlo, An Empirical Study on the Relationship among Soft-
ware Design Quality, Development Effort, and Governance in Open Source Projects, “IEEE
Transactions on Software Engineering” 2008, vol. 34, no. 6, pp.765–782.

22 P. Anbalagan, M. Vouk, On Predicting the Time Taken to Correct Bug Reports in Open
Source Projects, Software Maintenance 2009, ICSM 2009, IEEE International Conference
on, IEEE 2009, pp. 523–526; E. Capra, C. Francalanci, F. Merlo, The Economics of Commu-
nity Open Source Software Projects: An Empirical Analysis of Maintenance Effort, “Advances
in Software Engineering” 2010.

23 E. Capra, C. Francalanci, F. Merlo, The Economics of Community Open Source Soft-
ware Projects: An Empirical Analysis of Maintenance Effort, “Advances in Software Engineer-
ing” 2010.

24 A. J. Albrecht, J. E. Gaffney, Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation, “IEEE Transactions on Software Engineer-
ing” 1983, vol. 9, no. 6, pp. 639–648.

75An Architecture for Effort Estimation of Solutions Based on Open Source

Koch25 has reported that in Open Source development projects, the distribu-
tion of effort between the participants (programmers) is skewed. According
to Asundi26, given the difficulty in managing resources in closed source projects,
planning and delivering projects that are based on an Open Source community
can be a bigger challenge. Resource allocation and budgeting will be harder and
without a rigorous basis due to the distributed and collaborative nature of open
source software projects. For this reason, he argues that using existing effort
estimation models for Open Source projects has many disadvantages and thus,
distinct effort estimation models are needed for this purpose. Robles et al.27
present a new approach to estimate effort invested in an Open Source project
by considering data from mining repositories of the source code. In their study,
they proceed by the evaluation of developers’ activity and their identification as
full time developers, part time developers or occasional developers. The specific
methodology they use to ‘identify’ as full-time, part-time or occasional consists
in measuring for each developer:
• the number of commits merged in the code base during a given period;
• the number of active days during a given period, considered as days in which

a developer performs at least one commit to the code base.
Their model is based on finding a threshold value t for the number of com-

mits (or active days) for which they identify full-time, part-time and occasional
developers with a minimum error. According to their Open Source estimation
model, activity of all full-time developers would be above t while non full-time
developers (part-time and occasional ones) would stay below t. In the proposed
model framework, the number of commits is also taken into account. They show
that their model offers a simple way of obtaining a software development esti-
mate with bounded margins of error. Amor et al.28 propose characterizing the
activity of a developer through a versioning system, e-mails, a bugs tracking

25 S. Koch, Profiling an Open Source Ecology and its Programmers, “Electronic Markets”
2004, vol. 14, no. 2, pp. 416–429.

26 J. Asundi, The Need for Effort Estimation Models for Open Source Software Projects,
5-WOSSE Proceedings of the 5th Qorkshop on Open Source Software Engineering, New
York 2005.

27 G. Robles, J. M. González-Barahona, C. Cervigón, A. Capiluppi, D. Izquierdo-Cortázar,
Estimating Development Effort in Free/Open Source Software Projects by Mining Software Re-
positories: A Case Study of OpenStack, MSR 2014 Proceedings of the 11th Working Conference
on Mining Software Repositories, Hyderabad 2014.

28 J. J. Amor, G. Robles, J. M. González-Barahona, Effort Estimation by Characterizing De-
veloper Activity, Proceedings of the 2006 International Workshop on Economics Driven Soft-
ware Engineering Research, ACM 2006, pp. 3–6.

76 Donatien Koulla Moulla, Alain Abran, Kolyang

system etc. in order to measure the total effort invested in a project. This study
has been repeated by Kalliamvakou et al.29 to measure the contribution of devel-
opers from software repositories. Capiluppi et al.30 tried to determine the aver-
age of hours work per day by the Linux kernel developers. Mockus et al.31 have
shown that the top 15 of nearly 400 programmers in the Apache project added
88 per cent of the total of lines of code. Mockus et al.32 compared the produc-
tivity of the best developers of the Apache project and those of five commercial
projects. They defined productivity as the mean number of Lines of Code per
developer: this approach to measure productivity is rather fuzzy because pro-
ductivity measurement depends on how it is defined, how it is measured and
what are the assumptions and constraints. Moulla et al.33 applied the COCOMO
model and Function Points with real data from an Open Source Project, namely
TRIADE version 7.a in order to show that the development of software based on
Open Source has its advantages in terms of effort compared to the development
from scratch: these findings illustrate that the use of Open Source software as
a basis for further development can reduce effort and implementation time of
a product (software). Further work is needed to explore whether what has been
found in a rather small context with few data, can be extended to larger sam-
ples representing additional contexts and constraints.

29 E. Kalliamvakou, E. Gousios, G. Spinellis, D. Pouloudi, Measuring Developer Contribu-
tion from Software Repository Data, MCIS 2009 4th Mediterranean Conference on Informa-
tion Systems, Athens 2009, pp. 600–611.

30 A. Capiluppi, D. Izquierdo-Cortazar, Effort Estimation of FLOSS Projects: A Study of the
Linux Kernel, “Journal of Empirical Software Engineering” 2013, vol. 18, no. 1, pp. 60–88.

31 A. Mockus, R. Fielding, J. Herbsleb, Two Case Studies of Open Source Software Develop-
ment: Apache and Mozilla, “CM Transactions on Software Engineering and Methodology”
2002, vol. 11, no. 3, pp. 309–346.

32 Ibidem.
33 D. K. Moulla, Kolyang, COCOMO Model for Software Based on Open Source: Application

to the Adaptation of TRIADE to the University System, “International Journal on Computer
Science and Engineering” 2013, vol. 5, pp. 522–527; D. K. Moulla, I. Damakoa, Kolyang, Ap-
plication of Function Points to Software Based on Open Source: A Case Study, Proceedings of
the Joint Conference of the International Workshop on Software Measurement and the In-
ternational Conference on Software Process and Product Measurement, Rotterdam 2014.

77An Architecture for Effort Estimation of Solutions Based on Open Source

3. A Proposed Architecture

In the Open Source software context, on the one hand, the large availabil-
ity of heterogeneous software components on the internet allows developers
to choose the most appropriate reusable components freely. On the other hand,
it is not easy to find the most relevant Open Source software product for a par-
ticular business objective because of the huge number of existing Open Source
products and their multiple versions. To find a relevant product, Ihara et al.34
propose using software search engines such as SPARS, Kobers and Jarhoo. To
find the appropriate version of a product, Mileva et al.35 have proposed a library
recommender system called AKTARI. In the software development process based
on Open Source (Open Source components), steps of selection, analysis and test-
ing of software components may be time consuming. When a developer finds
a bug or wants to add a new functionality to an Open Source product, debug-
ging and adding functionality is usually very difficult because the code has been
developed by someone else in the OSS community. To solve these problems, sev-
eral techniques have been proposed36.

Wieringa et al. have identified six strategies for generalizing software engi-
neering theories37. The present work is a case-based research. In case-based
research, the variability of the real world is reduced by decomposing a case into
components that can produce case phenomena by their interactions38. This study
comes from the phenomenon observed by Moulla et al. in their case study39.

34 A. Ihara, A. Monden, K. Matsumoto, Industry Questions about Open Source Software
in Business: Research Directions and Potential Answers, 6th International Workshop on Em-
pirical Software Engineering in Practice 2014, pp. 55–59.

35 Y. M. Mielva, V. Dallmeier, M. Burger, A. Zeller, Mining Trends of Library Usage, In Pro-
ceedings of the International Workshop on Principles of Software Evolution 2009, pp. 57–62.

36 K. Dongsun, T. Yida, K. Sunghun, Z. Andreas, Where Should We Fix This Bug? A Two
Phase Recommendation Model, “IEEE Transactions on Software Engineering” 2013, vol. 39,
issue 11, pp. 1597–1610; D. Beyer, Co-change Visualization Applied to PostgreSQL and Ar-
goUML, In Proceedings of the 3 rd International Workshop on Mining Software Repositories
2006, pp. 165–166; B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk, Feature Location in Source
Code: A Taxonomy and Survey, “Journal of Software: Evolution and Process” 2013, vol. 25,
no. 1, pp. 53–95.

37 R. Wieringa, M. Daneva, Six Strategies for Generalizing Software Engineering Theories,
“Science of Computer Programming” 2015, no. 101, pp. 136–152.

38 Ibidem.
39 D. K. Moulla, Kolyang, COCOMO Model for Software Based on Open Source: Application

to the Adaptation of TRIADE to the University System, “International Journal on Computer
Science and Engineering” 2013, vol. 5, pp. 522–527; D. K. Moulla, I. Damakoa, Kolyang,

78 Donatien Koulla Moulla, Alain Abran, Kolyang

Choice and analysis of

Basic Open
Source
System

Functional
Requirements

(FUR)

Non-Functional
Requirements(NFR)

Component
Selection

Target Solution

Component
Integration and Test

Adapted
Open Source

Solution

Costing
Model

Estimating
Effort

Quality
Requirements

System
Environment
Requirements

Technical
Requirements

selected components

Functionality to be
implemented

Integration and test of
selected components

Basic Open
Source
System

Functional
Requirements

(FUR)

Non-Functional
Requirements

(NFR)

Component
Selection

Target Solution

Component
Integration

and Test

Adapted
Open Source

Solution

Costing
Model

Estimating
Effort

Quality
Requirements

System
Environment
Requirements

Technical
Requirements

Figure 1. Proposed Architecture (Prototype) to Estimate Effort of a Solution Based on
Open Source

Source: the authors’ own study.

They analysed the development of the software (solution) based on Open
Source Software called TRIADE. The development was done by analysing

Application of Function Points to Software Based on Open Source: A Case Study, Proceedings
of the Joint Conference of the International Workshop on Software Measurement and the
International Conference on Software Process and Product Measurement, Rotterdam 2014.

79An Architecture for Effort Estimation of Solutions Based on Open Source

both the source code (complexity of code) and system functionalities (func-
tional requirements, non-functional requirements, etc.). Our architecture can
be applied to similar cases (projects) and is intended both for practitioners and
the industry. To conduct the adaptation of a software system, re-engineering is
recommended. To understand how the system is built, usually two main sources
of information can be used40:
• the source code of the application;
• the users of the platform.

The starting point to understand how the system is built is to understand
how the different users interact with the system (system functionalities). Indeed,
the way users interact with the system helps to understand how the system is
used from the business point of view (system functionalities or Functional User
Requirements – FUR). In addition, an analysis of the source code of software
system to adapt and its execution in production help to retrieve the architecture
of an application with its different components and classes (code complexity).

The basic Open Source system contains pieces of software (components) that
need to be adapted. The Functional Requirements describe what the solution
should do (i.e. the functionality to be implemented). ISO 14143–141 defines the
Functional Requirements as a sub-set of the user requirements (i.e., require-
ments that describe what the software shall do, in terms of tasks and services).

The Non Functional Requirements describe how well the solution per-
forms its task. The Non Functional Requirements characterize the software
constraints which include quality and technical requirements (maintainabil-
ity, portability, security, reliability, performance, documentation, etc.). ISO
2476542 defines a Non-Functional Requirement as a software requirement that
describes not what the software will do but how the software will do it. Accord-
ing to COSMIC43 and IFPUG44 definition, a Non-Functional Requirement is any
requirement for the software part of a hardware/software system or of a soft-
ware product, including how it should be developed and maintained, and how

40 D. K. Moulla, I. Damakoa, Kolyang, Application of Function Points to Software Based on
Open Source: A Case Study, Proceedings of the Joint Conference of the International Work-
shop on Software Measurement and the International Conference on Software Process and
Product Measurement, Rotterdam 2014.

41 ISO/IEC 14143/1:2011, Information Technology = Software Measurement – Functional
Size Measurement.

42 ISO/IEC 24765:2010, Systems and Software Engineering Vocabulary.
43 ‘COSMIC’ = the Common Software Measurement International Consortium (www.cos-

mic-sizing.org).
44 ‘IFPUG’ = the International Function Point Users Group (www.ifpug.org).

80 Donatien Koulla Moulla, Alain Abran, Kolyang

it should perform in operation, except any functional user requirement for the
software45. Non-functional requirements concern:
• the software quality;
• the environment in which the software must be implemented and which it

must serve;
• the processes and technology to be used to develop and maintain the soft-

ware and the technology to be used for the software execution, etc. (the
technical aspects).
Figure 2 presents the main classes of Non-Functional Requirements.

Software
Non-Functional

Requirements (NFR)

Quality
Requirements

Software System
Environment
Requirements

Technical
Requirements

Figure 2. Summary Model of Software Non-Functional Requirements
Source: the authors’ own study.

According to COSMIC and IFPUG, quality requirements are defined as
requirements for the quality or for the architecture or design of the delivered
system or software product46.

System environment requirements are the characteristics of the environ-
ment in which the software system is developed and maintained and which it
must support in operation47. Technical requirements are the requirements for
how the software will be built, such as the programming language to be used
and for the technology (hardware and communications) that the system will
need in operation48.

Based on these requirements, a target solution is designed. The effort involved
in each activity can then be estimated by taking into account all the attributes

45 COSMIC/IFPUG Glossary of Non-Functional Requirements and Project Terms, v. 1.0, June
2015.

46 Ibidem.
47 Ibidem.
48 Ibidem.

81An Architecture for Effort Estimation of Solutions Based on Open Source

in relation with effort. The costing model can be derived from the target solu-
tion, schedule and adapted Open Source solution.

Some studies have been done on effort modelling and participation of devel-
opers in Open Source Projects49. For solutions based on Open Source, the effort
involved in each activity must be estimated. The effort to identify and estimate is
indeed the effort to make changes and to integrate since the basic Open Source
system is already developed. The total effort invested is the sum of effort involved
in each activity.

Functional size for
software

Effort related to design
quality or non-functional

requirements

Effort related to the number
of changes to source code

(added, removed, modified
– commits)

Capacity for hardware

Effort

Effort of integrating
the various pieces of software

and new functionalities

Complexity of source code

Figure 3. Schema on Tasks-related Effort Estimation for Solutions Based on Open
Source

Source: the authors’ own study.

In the context of solutions based on Open Source, all attributes or factors
in relation with effort must be also taken into account, such as:
• the effort of integrating the various pieces of software: it represents effort

required to integrate the pieces of given software;
• effort related to quality attributes or non-functional requirements;
• the number of changes to source code (commits): it represents the amount

of work devoted to make changes;
• effort related to the complexity of code: it represents effort required to under-

stand how the source code is built; the particularity of the Open Source

49 S. Koch, Effort Modelling and Programmer Participation in Open Source Software Pro-
jects, Information Economics and Policy 2008; S. Koch, G. Schneider, Effort, Cooperation and
Coordination in an Open Source Software Project: GNOME, “Information Systems Journal”
2002; S. Koch, Organisation of Work in Open Source Projects: Expended Effort and Efficiency,
“Revue d’économie industrielle” 2011, no. 136, 4ème trimester.

82 Donatien Koulla Moulla, Alain Abran, Kolyang

software as it relates to effort estimation has to do with the fact that devel-
opers are required to work on a completely unfamiliar code;

• capacity for hardware;
• functional size for the software.

The architecture represents how the non-functional are addressed in the
solution.

4. Discussion and Future Work

This paper addressed the issue of an architecture of effort estimation for
solutions based on Open Source. Most research works on effort estimation of
software projects have focused on conventional (traditional) projects with com-
mercial licenses and are therefore not taking into account the software built
using Open Source. An estimation architecture has been proposed for this pur-
pose. Compared to previous studies related to effort estimation, the proposed
architecture seems to be close to these ones. Like some existing effort estimation
models, the proposed framework takes into account functional requirements,
non-functional requirements, capacity for hardware etc. However, our proposal
includes, in addition, the effort of integrating the various pieces of software and
new functionalities and effort related to the number of changes to the source
code (added, removed, modified – commits).

Architectures of estimation models often make assumptions about the con-
text in which they are intended to be applied. As such, the proposed architec-
ture presented here has some limitations. For instance, this architecture must
take into account all attributes in relation with effort and has to be validated by
software estimation experts.

The present study constitutes an exploratory research frame on the develop-
ment of specialized effort estimation models for solutions based on Open Source.

We plan to refine our architecture as part of our research in the near future.
We will take into account other attributes in relation with effort which have
not been mentioned in this article. We plan to conduct a more detailed discus-
sion of what effort/cost drivers are missing from (or need a reinterpretation
for) the traditional estimation models that are needed to successfully estimate
Open Source development effort. This includes how to evaluate the proposal
in the real-life context and how to make generalizations a more robust analyti-
cal induction as part of our research in the near future.

83An Architecture for Effort Estimation of Solutions Based on Open Source

References

Albrecht A. J., Gaffney J. E., Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation, “IEEE Transactions on Software
Engineering” 1983, vol. 9, no. 6, pp. 639–648.

Albrecht A. J., Measuring Application Development Productivity, IBM Application Devel-
opment Symposium, Monterey, October 1979, pp. 14–17.

Amor J. J., Robles G., González-Barahona J. M., Effort Estimation by Characterizing
Developer Activity, Proceedings of the 2006 International Workshop on Econom-
ics Driven Software Engineering Research, ACM 2006, pp. 3–6.

Anbalagan P., Vouk M., On Predicting the Time Taken to Correct Bug Reports in Open
Source Projects, Software Maintenance 2009, ICSM 2009, IEEE International
Conference on, IEEE 2009, pp. 523–526.

Asundi J., Kazman R., Klein M., An Architectural Approach to Software Cost Model-
ing, Second International Workshop on Economics-driven Software Engineering
Research, Limerick 2000.

Asundi J., The Need for Effort Estimation Models for Open Source Software Projects,
5-WOSSE Proceedings of the 5th Qorkshop on Open Source Software Engineer-
ing, New York 2005.

Beyer D., Co-change Visualization Applied to PostgreSQL and ArgoUML, In Proceed-
ings of the 3 rd International Workshop on Mining Software Repositories 2006,
pp.165–166.

Boehm B. W, Abts C., Brown A. W., Chulani S., Clark B. K., Horowitz E., Madachy R.,
Reifer D. J., Teece B., Software Cost Estimation with COCOMO II, Prentice-Hall,
New Jersey 2000.

Boehm B. W., A Spiral Model for Software Development and Enhancement, “IEEE Com-
puter” 1988, vol. 21, no. 5, pp. 61–72.

Boehm B. W., Software Engineering Economics Prentice-Hall, New Jersey 1981.

Bollinger T., Nelson R., Self K. M., Turnbull S. J., Open Source Methods: Peering through
the Clutter, “IEEE Software” 1999, vol. 16, no. 4, pp. 8–11.

Capiluppi A., Izquierdo-Cortazar D., Effort Estimation of FLOSS Projects: A Study
of the Linux Kernel, “Journal of Empirical Software Engineering” 2013, vol. 18,
no. 1, pp. 60–88.

Capra E., Francalanci C., Merlo F., An Empirical Study on the Relationship among Soft-
ware Design Quality, Development Effort, and Governance in Open Source Projects,
“IEEE Transactions on Software Engineering” 2008, vol. 34, no. 6, pp.765–782.

Capra E., Francalanci C., Merlo F., The Economics of Community Open Source Soft-
ware Projects: An Empirical Analysis of Maintenance Effort, “Advances in Software
Engineering” 2010.

COSMIC/IFPUG Glossary of Non-Functional Requirements and Project Terms, v. 1.0,
June 2015.

84 Donatien Koulla Moulla, Alain Abran, Kolyang

Dit B., Revelle M., Gethers M., Poshyvanyk D., Feature Location in Source Code: A Tax-
onomy and Survey, “Journal of Software: Evolution and Process” 2013, vol. 25,
no. 1, pp. 53–95.

Dongsun K., Yida T., Sunghun K., Andreas Z., Where Should We Fix This Bug? A Two
Phase Recommendation Model, “IEEE Transactions on Software Engineering”
2013, vol. 39, issue 11, pp. 1597–1610.

Ihara A., Monden A., Matsumoto K., Industry Questions about Open Source Software
in Business: Research Directions and Potential Answers, 6th International Workshop
on Empirical Software Engineering in Practice 2014, pp. 55–59.

ISO/IEC 14143/1:2011, Information Technology = Software Measurement – Functional
Size Measurement.

ISO/IEC 24765:2010, Systems and Software Engineering Vocabulary.

Kalliamvakou E., Gousios E., Spinellis G., Pouloudi D., Measuring Developer Contri-
bution from Software Repository Data, MCIS 2009 4th Mediterranean Conference
on Information Systems, Athens 2009, pp. 600–611.

Koch S., Effort Modelling and Programmer Participation in Open Source Software Proj-
ects, Information Economics and Policy 2008.

Koch S., Organisation of Work in Open Source Projects: Expended Effort and Efficiency,
“Revue d’économie industrielle” 2011, no. 136, 4ème trimester.

Koch S., Profiling an Open Source Ecology and its Programmers, “Electronic Markets”
2004, vol. 14, no. 2, pp. 416–429.

Koch S., Schneider G. Effort, Cooperation and Coordination in an Open Source Soft-
ware Project: GNOME, “Information Systems Journal” 2002.

Mielva Y. M., Dallmeier V., Burger M., Zeller A., Mining Trends of Library Usage, In
Proceedings of the International Workshop on Principles of Software Evolution
2009, pp. 57–62.

Mockus A., Fielding R., Herbsleb J., Two Case Studies of Open Source Software Devel-
opment: Apache and Mozilla, “CM Transactions on Software Engineering and
Methodology” 2002, vol. 11, no. 3, pp. 309–346.

Moulla D. K., Damakoa I., Kolyang, Application of Function Points to Software Based
on Open Source: A Case Study, Proceedings of the Joint Conference of the Inter-
national Workshop on Software Measurement and the International Conference
on Software Process and Product Measurement, Rotterdam 2014.

Moulla D. K., Kolyang, COCOMO Model for Software Based on Open Source: Applica-
tion to the Adaptation of TRIADE to the University System, “International Journal
on Computer Science and Engineering” 2013, vol. 5, pp. 522–527.

Raymond E. S., The Cathedral and the Bazaar, O’Reilly & Associates, Cambridge 1999.

Robles G., González-Barahona J. M., Cervigón C., Capiluppi A., Izquierdo-Cortázar D.,
Estimating Development Effort in Free/Open Source Software Projects by Mining
Software Repositories: A Case Study of OpenStack, MSR 2014 Proceedings of the
11th Working Conference on Mining Software Repositories, Hyderabad 2014.

85An Architecture for Effort Estimation of Solutions Based on Open Source

Stamelos I., Angelis L., Oikonomou A., Bleris G. L., Code Quality Analysis in Open
Source Software Development, “Information Systems Journal” 2002, vol. 12, no. 1,
pp. 43–60.

Tiwari V., Some Observations on Open Source Software Development on Software Engi-
neering Perspectives, “International Journal of Computer Science & Information
Technology”, December 2010, vol. 2, no. 6.

Vixie P., Software Engineering, in: Open Sources: Voices from the Open Source Revolu-
tion, eds. C. DiBona et al., O’Reilly, Cambridge 1999.

Wieringa R., Daneva M., Six Strategies for Generalizing Software Engineering Theories,
“Science of Computer Programming” 2015, no. 101, pp. 136–152.

