
Baris Özkan1

Automated Functional Size Measurement
for Three-Tier Object Relational Mapping

Architectures

Abstract
Software Functional Size Measurement (FSM) methods are generic. Additional

measurement rules, procedures and concept mappings between the generic measure-
ment constructs and specific software artifacts are required in order to improve the
measurement objectivity, consistency and enable measurement automation. Although
FSM methods provide guidance for measuring software that has well-known archi-
tectures, there are opportunities to improve and automate measurements from the
artifacts of such architectures. In this paper, a functional size measurement approach
for the software that has the Three-Tier Object Relational Mapping architecture is
proposed. The approach is based on two components: a mapping between the ele-
ments of this software architecture and the COSMIC method constructs and a pro-
totype measurement tool that implements a measurement procedure based on this
mapping. In the study the components of the approach are described, the results of
a measurement case study are presented and the opportunities and the limitations of
the approach are discussed.

Keywords: COSMIC, Object Relational Mapping, Three-Tier architecture, Func-
tional Size Measurement, automation

1. Introduction

Functional size measurement (FSM) is a key practice used in software
management. Functional size not only provides valuable information regard-
ing requirements control and project estimation but also constitutes a versatile
measure that normalizes various metrics across different activities and processes

1 Atilim University, Department of Information Systems Engineering, Ankara, Turkey,
baris.ozkan@atilim.edu.tr

52 Baris Özkan

in software management2. FSM methods provide generic software models, con-
cepts and rules which need to be adapted to specific software contexts in order
to produce accurate, repeatable and consistent measurement results3. Many
studies propose concept mappings and procedures for functional size meas-
urement from different software models, specification languages and architec-
tural styles4. FSM methods also provide guidance in order to support measures
in interpreting the concepts and applying the measurement rules for software
architectures. For instance, COSMIC FSM includes examples and explanations
for sizing Three-Tier architectures and also provides a guideline for measuring
applications that have the Service Oriented Architecture5.

2 B. Özkan, O. Turetken, O. Demirörs, Software Functional Size: For Cost Estimation and
More, in: Software Process Improvement, Springer 2008, pp. 59–69.

3 B. Özkan, O. Demirörs, Formalization Studies in Functional Size Measurement: How Do
They Help?, in: Software Process and Product Measurement, Springer 2009, pp. 197–211.

4 H. Diab, M. Frappier., R. St-Denis, A Formal Definition of Function Points for Automated
Measurement of B Specifications, Formal Methods and Software Engineering, Springer 2002,
pp. 483–494; D. Hassan, M. Frappier, R. St-Denis, A Formal Definition of COSMIC-FFP for
Automated Measurement of ROOM Specifications, 4th European Conference Software Meas-
urement and ICT Control 2001; E. Lamma, P. Mello, F. Riguzzi, A System for Measuring Func-
tion Points from an ER–DFD Specification, “The Computer Journal” 2004, no. 47, pp. 358–
372; B. Marín, G. Giachetti, O. Pastor, Measurement of Functional Size in Conceptual Models:
A Survey of Measurement Procedures Based on COSMIC, Software Process and Product Meas-
urement, Springer 2008, pp. 170–183; B. Marín, O. Pastor, G. Giachetti, Automating the
Measurement of Functional Size of Conceptual Models in an MDA Environment, Product-Fo-
cused Software Process Improvement, Springer 2008, pp. 215–229; C. Monsalve, A. Abran,
A. April, Measuring Software Functional Size from Business Process Models, “International
Journal of Software Engineering and Knowledge Engineering” 2011, no. 21, pp. 311–338;
M. A. Sag, A. Tarhan, Measuring COSMIC Software Size from Functional Execution Traces of
Java Business Applications, Software Measurement and the International Conference on
Software Process and Product Measurement (IWSM–MENSURA), Joint Conference of the
International Workshop 2014, IEEE, pp. 272–281; C. Symons, A. Lesterhuis, Guideline for
Sizing Service-Oriented Architecture Software, v.1.1, The Common Software Measurement
International Consortium (COSMIC) 2015; T. Edagawa, T. Akaike, Y. Higo, S. Kusumoto,
S. Hanabusa, T. Shibamoto, Function Point Measurement from Web Application Source Code
Based on Screen Transitions and Database Accesses, “Journal of Systems and Software” 2011,
no. 84, p. 976–984; H. Soubra, K. Chaaban, Functional Size Measurement of Electronic Con-
trol Units Software Designed Following the AUTOSAR Standard: A Measurement Guideline
Based on the COSMIC ISO 19761 Standard, IWSM/MENSURA 2010; A. Živkovič, I. Rozman,
M. Heričko, Automated Software Size Estimation Based on Function Points Using UML mod-
els, “Information and Software Technology” 2005, no. 47, pp. 881–890.

5 C. Symons, A. Lesterhuis, Guideline for Sizing Service-Oriented Architecture Software, v.1.1,
The Common Software Measurement International Consortium (COSMIC) 2015; A. Abran,
J.-M. Desharnais, S. Oligny, DD. St-Pierre, C. Symons, The COSMIC Functional Size Meas-
urement Method v.4.0.1, COSMICON 2015.

53Automated Functional Size Measurement for Three-Tier Object Relational Mapping...

Another challenge in FSM is that the manual measurement process usually
requires high time and effort costs and is prone to measurement errors by the
measurers. An automated measurement process brings in several advantages
which help measurers to reduce the cost, time, effort, subjectivity and improve
the objectivity, repeatability and consistency in the measurement results6.

In this study, we propose an FSM approach for the automated measurement
of business application software that has the Three-Tier Object Relational Map-
ping (ORM) architecture, which addresses these two challenges. The proposed
approach has been developed for COSMIC FSM which is an ISO/IEC 14143
compliant and internationally recognized FSM method7. COSMIC FSM has also
detailed guidelines on architectural aspects of FSM8.

The study explained in this paper is motivated by two observations. The
first one is that the Three-Tier architecture -one of the most popular software
architectures used in Object Oriented development and which is addressed
in the COSMIC official manual and user guide- allows the identification of
a set of COSMIC software model concepts (e.g. boundary, layer, scope) with
an improved consistency. Secondly, ORM architectural components allow the

6 B. Özkan, O. Demirörs, Formalization Studies in Functional Size Measurement: How
Do They Help?, in: Software Process and Product Measurement, Springer 2009, pp. 197–211;
H. Diab, M. Frappier, R. St-Denis, A Formal Definition of Function Points for Automated
Measurement of B Specifications, Formal Methods and Software Engineering, Springer 2002,
pp. 483–494; D. Hassan, M. Frappier, R. St-Denis, A Formal Definition of COSMIC-FFP for
Automated Measurement of ROOM Specifications, 4th European Conference Software Measure-
ment and ICT Control 2001; B. Marín, O. Pastor, G. Giachetti, Automating the Measurement
of Functional Size of Conceptual Models in an MDA Environment, Product-Focused Software
Process Improvement, Springer 2008, pp. 215–229; A. Živkovič, I. Rozman, M. Heričko, Au-
tomated Software Size Estimation Based on Function Points Using UML models, “Informa-
tion and Software Technology” 2005, no. 47, pp. 881–890; H. Diab, F. Koukane, M. Frap-
pier, R. St-Denis, μ c ROSE: Automated Measurement of COSMIC-FFP for Rational Rose Real
Time, “Information and Software Technology” 2005, no. 47, pp. 151–166; V. T. Ho, A. Abran,
A Framework for Automatic Function Point Counting from Source Code, International Work-
shop on Software Measurement 1999; M. S. Jenner, Automation of Counting of Functional
Size Using COSMIC FFP in UML, COSMIC Function Points: Theory and Advanced Practices
2011, p. 276; K. Paton, Automatic Function Point Counting Using Static And Dynamic Code
Analysis, International Workshop on Software Measurement 1999; A. T. Rana Gonultas, Run-
time Calculation of COSMIC Functional Size via Automatic Installment of Measurement Code
into Java Business Applications, SEAA-EUROMICRO 2015.

7 ISO/IEC: 19761 Software Engineering-COSMIC-A Functional Size Measurement Method,
International Organization for Standardization, Geneva 2011.

8 C. Symons, A. Lesterhuis, Guideline for Sizing Service-Oriented Architecture Software, v.1.1,
The Common Software Measurement International Consortium (COSMIC) 2015; A. Abran,
J.-M. Desharnais, S. Oligny, D. St-Pierre, C. Symons, The COSMIC Functional Size Measure-
ment Method v.4.0.1, COSMICON 2015.

54 Baris Özkan

abstraction of implementation details regarding data persistence and allow the
identification of COSMIC software model measurement constructs (e.g. Data
Movements, Data Groups) from Object Oriented constructs. Therefore, business
application software which has a Three-Tier ORM architecture offers opportu-
nities for automated FSM by taking advantage of the possibilities of automated
extraction of COSMIC Software Model constructs from software architecture
and code by a systematic analysis. Following our motivation, the proposal has
two main components:
• A Mapping of Three-Tier ORM business application architecture to the

 COSMIC Software Model concepts, which provides a basis for automated
measurement;

• An automation tool which implements the proposed mapping.
The proposed mapping relies on COSMIC definitions and guidelines for

Three-Tier architectures and extends it with ORM concepts. The tool implements
the proposed mapping for a selected set of Three-Tier ORM business application
architecture technologies (e.g., development language, platform, components).

In section two, a background on the Three-Tier architecture and ORM is
given. In section three, the mapping between the concepts of the COSMIC Soft-
ware Model and Three-Tier ORM architecture is given and the automated meas-
urement tool is explained. In section four we present the results of a case study.

2. Background

2.1. Three-Tier Architecture

Three-Tier is an architectural pattern that is based on the separation of the
layers of an application. This pattern separates data, business logic and clients
(or user interface) from each other. It provides a more secure, flexible and con-
venient way to match with the business application logic9. The layers of the
application and their descriptions are given in Fig. 1.

9 R. N. Taylor, N. Medvidovic, E. M. Dashofy, Software Architecture Foundations, Theory
and Practice, John Wiley and Sons 2010; A. Aarsten, D. Brugali, G. Menga, Patterns for Three-
Tier Client/Server Applications 1996.

55Automated Functional Size Measurement for Three-Tier Object Relational Mapping...

Figure 1. Three-Tier Layers
Source: the authors’ own study.

2.2. Object Relational Mapping

ORM is a mapping technique used in Object Oriented Development which
maps domain objects (a.k.a. business data objects) of an application to the data
objects of a two dimensional database10. It allows persistence and retrieval of
data at the object level hiding the implementation of specific details regarding
the underlying data structure and access protocol. ORM tries to find the best
specific way to combine the Object Oriented Logic to Relational Table Model of
the application. ORM also supports the modeling of complex object relationships
such as inheritance or composition, thus preserves the properties of the objects
and their relationships. Some of the popular ORM frameworks and components
common in software community are Hibernate for Java11, NHibernate for.NET12

10 M. Keith, M. Schnicariol, Object-Relational Mapping, Apress 2010.
11 C. Bauer, G. King, Hibernate in Action, Dreamtech Press 2007.
12 J. Dentler, NHibernate 3.0 Cookbook, Packt Publishing, Birmingham 2010.

56 Baris Özkan

and ActiveAndroid ORM for Android13 and GORM14 environments. ORM libraries
have standard application programming interfaces (API) through which stand-
ardized calls for object retrieval and persistence are made.

Fig. 2 illustrates the mapping of two domain objects (Customer and BankAc-
count) to their corresponding data tables. Once this mapping is defined (manually
or optionally by ORM) the ORM components synchronize data tables on data-
base to the Customer, BankAccount object instances throughout the application
life cycle without requiring any further involvement of the software developer.

Figure 2. Object-to-Relational-Mapping for Two Classes
Source: the authors’ own study.

3. The Mapping and Measurement Tool

3.1. Mapping

The mapping between COSMIC Software Model constructs is the speciali-
zation and the extension to the COSMIC Three-Tier model given in the COSMIC

13 ActiveAndroid, http://www.activeandroid.com/
14 C. Richardson, Orm in Dynamic Languages, Communications of the ACM 52 2009,

pp. 48–55.

57Automated Functional Size Measurement for Three-Tier Object Relational Mapping...

Method15. The COSMIC Three-Tier model and the extended model we use in this
study is shown in Fig. 3 and Fig. 4, respectively. The Business Application Data
Layer (Fig. 4) matches a persistent storage in the COSMIC context (Data Ser-
vice Component in Fig. 3). Similar to the Business Logic Layer in the Three-Tier
context; Business Rules Layer will get and send data from/to the Functional
Users of the application or write and read data to/from the storage. The Pres-
entation-Layer in Three-Tier and User-Interface Layer in COSMIC are functional
users of the business layer. Software or a component, a control mechanism or
a sensor may also be a Functional User (FU) of business layers.

Presentation Layer
(Func. User of Logic Layer)

Business Logic Layer

Data Layer

Business Data
Objects

OR
M

Business Data
Objects

Figure 3. Three Views of the Layers of an
Application17

Figure 4. An ORM Based Three-Tier
Business Application Data Flow
Chart18

Source: the authors’ own study.

Application Layer: According to COSMIC, business application software
is presented in the application layer which comprises User Interface, Business
Rules and Data Service peer components18. In our mapping, the three corre-
sponding components (i.e., architectural layers) are Presentation, Business Logic
and Data Layers, respectively.

Boundary: According to the COSMIC Generic Software Model19, the bound-
ary is a conceptual interface between the software and its functional users.

15 A. Abran, J.-M. Desharnais, S. Oligny, D. St-Pierre, C. Symons, The COSMIC Functional
Size Measurement Method v.4.0.1, COSMICON 2015.

16 Ibidem.
17 Ibidem.
18 Ibidem.
19 Ibidem.

A
pp

lic
at

io
n

as
 a

 w
ho

le
.

58 Baris Özkan

According to the Three-Tier ORM architecture, the presentation layer is “thin”
in the sense that it does not contain any data processing logic but only conveys
data/events between the functional users and the application. Therefore, the
boundary corresponds to the presentation layer component of the architecture
which includes interface elements and behavior (e.g. GUI, Web Service inter-
face) for its users.

Functional Users are the types of the sender and/or the intended recipient
in the Functional User Requirements of software. A COSMIC functional user
may be a human, another program, a service or a device20. Like these users, the
users of business logic are the presentation layers which are used by application
users (humans, services, another program etc.).

Object of interest: In COSMIC, an object of interest is defined as a “thing”
from a point of view of Functional User Requirements. The domain objects of
the Three-Tier architecture are the corresponding object of interests. The stor-
age and the retrieval of these objects are managed by ORM components.

Data Groups: In COSMIC, a data group consists of a unique set of data attrib-
utes that describe a single object of interest. In our mapping data groups are
attribute subsets of domain objects as configured for ORM components. ORM
allows the identification of complex object relations such as inheritance, com-
position and aggregation, thus we allow complex attribute types.

Functional Process: An elementary component of a set of Functional User
Requirements (FURs) comprising a unique, cohesive and independently execut-
able set of data movement types. This corresponds to the Business Application
Task which is a complete sequence of service (or method) invocations in the
business logic layer that starts with a user initiated event at the presentation
layer and may utilize functions of the data access layer.

Triggering Entry: The Entry data movement of a functional process that
moves a data group generated by a functional user that the functional pro-
cess needs to start processing. The data group moved by the triggering Entry
is generated by a functional user in response to a triggering event21. In Three-
Tier business applications, a triggering event is any event that starts a Business
Application Task.

Data Movements:
• Enter (E): A data movement that moves a data group from a functional user

across the boundary into the functional process where it is required. In the

20 Ibidem.
21 Ibidem.

59Automated Functional Size Measurement for Three-Tier Object Relational Mapping...

Three-Tier ORM architecture these movements correspond to movements
of data about a domain object from the presentation layer.

• Exit (X): A data movement that moves a data group from a functional pro-
cess across the boundary to the functional user that requires it. In the Three-
Tier ORM architecture these movements correspond to movements of data
about a domain object to the presentation layer.

• Read (R): A data movement that moves a data group from the persistent
storage into the functional process which requires it. In the Three-Tier ORM
architecture these movements correspond to the retrieval of domain objects
via standard ORM API methods.

• Write (W): A data movement that moves a data group lying inside a func-
tional process to the persistent storage. In the Three-Tier ORM architecture
these movements correspond to the persistence of domain objects via stand-
ard ORM API methods.

3.2. Measurement Tool

A prototype measurement tool for the functional size measurement of the
Three-Tier ORM architecture has been developed by implementing the mapping
given in section 3.1 and a measurement procedure. It has been designed to meas-
ure C# and ASP.NET based Three-Tier ORM business applications which use
NHibernate ORM component22 and map database relations to domain objects
via XML configuration files.

Fig. 5 gives an overview of the structure of the target application that can
be measured by the tool. It presents the software artifacts that can be extracted
from source-code and configuration files.

Fig. 6 depicts the five main steps of the measurement procedure and the
final results generated by the tool. It starts with resolving files and XML map-
ping files to identify the business domain objects, and then it finds presentation
layer controls (buttons, textboxes, html-tags etc.), which have a triggering action
and related events attached to these actions. Finally, after gathering all neces-
sary data, a measurement process is executed by the tool to generate measure-
ment results and other information that support the interpretation of the results.

22 J. Dentler, NHibernate 3.0 Cookbook, Packt Publishing, Birmingham 2010.

60 Baris Özkan

Database
Drivers

User Interfaces
(Presentation Layer)

EntereXit

ReadA
pp

lic
at

io
n

L
ay

er

Object of Interests (Classes)

Functional Processes

Dll Library

XML Mapping
Files

Database

Write

Database
Operations

Mapping

Data Manipulation and
Movement Process

Data Manipulation and

Figure 5. Target Application Structure
Source: the authors’ own study.

Figure 6. Measurement Processes of the Measurement Tool
Source: the authors’ own study.

61Automated Functional Size Measurement for Three-Tier Object Relational Mapping...

Fig. 7 illustrates the source code-architectural layers relation of the Three-
Tier application to be measured by our tool and shows how they relate to COS-
MIC concepts with respect to our mapping. The numbered steps show a typical
flow of events in a functional process once a triggering event has been started.
Accordingly, data movements 1, 8, 10 and 5, 6 can be defined as E, X, W and R
data movements, respectively.

Figure 7. Event Trigger and the Consequent Operations from the Measurement Tool
Perspective

Source: the authors’ own study.

62 Baris Özkan

4. Case Study

A case study has been conducted to evaluate the approach based on the com-
parison of the measurement results obtained by the tool to the manual meas-
urement results obtained by measurers.

4.1. Business Application

The selected Cuya-hoga application is an open source portal management
software that has the Three-Tier ORM architecture23. It is implemented in the
Visual Studio environment. It contains all necessary program files such as code
files, xml files and web pages and 16.7 Source Lines of Code.

4.2. Data Collection

Functional User Requirements of Cuya-hoga are derived from software code
files, user screens and other product documentation as there was not any explicit
requirement specification found on the product web page24. Manual measure-
ments were performed by a COSMIC Certified measurement expert, which were
later reviewed by the authors of this paper. A total of 29 hours were spent on
this measurement and review process. It took less than a minute to configure
the tool and get the results on a standard PC.

4.3. Results

The comparison of the manual measurement results (M) extracted by the
measurers; and the automated measurement results (A) provided by the meas-
urement tool automatically is based on data movements and FPs. Fig. 8 shows
the identified measurement constructs in a Venn diagram. Accordingly, the com-
mon constructs set (C) is derived from the intersection of M and A, missing (m)
constructs which could not be detected by the tool and extra (e) constructs which
were not included in the manual measurements but identified by the tool. In the
analysis of the results, we assumed the manual measurements were exact and

23 Cuya Hoga, http://cuyahoga-project.org/
24 Ibidem.

63Automated Functional Size Measurement for Three-Tier Object Relational Mapping...

all FPs, Data Movements and Triggering Events are valid and comply with the
rules in the COSMIC Manual.

M A

Cm e

Figure 8. Data Movement Classification of the Measurement
Source: the authors’ own study.

The results for C, m and e are shown in Table 1. The detection accuracy is cal-
culated with the equation of C*100/M which indicates the percentage of the meas-
urement constructs that were accurately identified by the tool. In other words,
it gives the percentage coverage of C in M. The number of common items can
be identified by the equation of A-e or M-m. In the identification of missed (m)
and extra (e) items FPs in M were taken into account, thus, false positives were
taken into account in the calculations.

Table 1. Manual and Automated Result Comparison Table

E W R X Total DM Total FP

Manual/ Actual 71 111 140 88 410 86

Auto: 39 116 167 63 385 93

Missed: 33 5 5 25 68 11

Extra: 5 14 28 4 51 18

Common: 34 102 139 59 334 75

Detection Accuracy: 47.9% 91.9% 99.3% 67.0% 81.5% 87.2%

Source: the authors’ own study.

As it can be seen from the values in Table 1, Fig. 9 and Fig. 10, the automated
W and R data movement detection accuracy rates are much higher than E and
X data movements.

64 Baris Özkan

Figure 9. Comparison of Common (C) and Extra (e) Items by Their Type
Source: the authors’ own study.

Figure 10. Comparison of Common (C) and Missing (e) Items by Their Type
Source: the authors’ own study.

4.4. Discussion of the Results

After the analysis of the source code in detail, we concluded that the high
accuracy detection rates for R and W data movements relate to the fact that
retrieval (R) and persistence (W) of all application business data were imple-
mented using ORM API properly, which provides a standardized and uniform
way for capturing data movements. However, the graphical user interface (GUI)
implementation was not uniform where a critical number of data movements
that pass between GUI and the logic layer of the application (see Fig. 5) could
not be detected. For example, the presentation layer was partly implemented

65Automated Functional Size Measurement for Three-Tier Object Relational Mapping...

in the JavaScript language and many data groups and triggering events were
not resolved from the source. The majority of extra FPs identified by the tool were
internal steps of a functional process identified by the manual measurer. This
result is not surprising because the mapping identifies a separate FP (business
task) for all consequent data movements after an event (button or link clicks) that
occurs at the GUI. However, it is not capable of relating business tasks to each
other. There was not a systemic cause found for the missing data movements.

One validity threat in the evaluation of the results is the errors or miscal-
culations that could be made in the manual measurement by the measurer. In
order to avoid and keep the errors minimum, measurements by a COSMIC cer-
tified measurer were reviewed and used. Another threat is the generalizability
of the results of this case study. Firstly, the case study subject was a small pro-
ject; secondly, it was an open source project where there was not any control
on code standardization.

Another threat is related to the measurement time improvement obtained
through automation. The time spent on manual measurement is rather high.
There was not any requirements specification for the case study application,
which would be the main source for capturing FURs. This might cause a longer
measurement time for the measurer of this application.

5. Conclusion

In this study, we introduced a direct approach to the measurement of ORM
based Three-Tier business applications. The approach was implemented in an
automated measurement prototype and evaluated in a case study. The initial
results and improvement opportunities from the application of the tool are
promising in the sense that it can be used to provide size information quickly
and with an acceptable accuracy rate to its users such as project managers.

The tool also provides extra information such as file counts, objects of inter-
est and relations among them, events and triggering components, method traces
and related parameters and return types for each method call. Such information
can be useful in a number of ways that needs investigation: it can help measur-
ers and project managers to further analyze the relationship between the num-
ber and types of components.

The tool has several limitations. Since the tool measures the functional size
from the source code, it may not be effectively used before FURs are implemented.

66 Baris Özkan

Thus, it may not provide much value in settings where detailed requirements
exist and measurements are mainly performed for estimation. On the contrary,
it can provide a significant value in software development environments where
there is not any or up-to-date FURs document available for measurement. It can
also be effectively used in settings where the development process is not driven
by detailed requirements but by executable software releases such as agile or
evolutionary development models.

As described above, the tool is able to detect data movements and functional
processes with high accuracy rates only if they are implemented in a standard-
ized way. When programmers do not follow a standard convention for imple-
menting the program codes, it limits the capability of the measurement tool
to detect and trace data movements.

Finally, the tool was not validated in large scale industrial business appli-
cations and the implementation was limited to a selected set of application
technology configuration (C#, ASP.NET, Nhibernate with xml mapping). We
recommend performing further case studies with open source and commercial
software of different sizes, technology as future work.

References

Aarsten A., Brugali D., Menga G., Patterns for Three-Tier Client/Server Applications 1996.

Abran A., Desharnais J.-M., Oligny S., St-Pierre D., Symons C., The COSMIC Func-
tional Size Measurement Method v.4.0.1, COSMICON 2015.

ActiveAndroid, http://www.activeandroid.com/

Bauer C., King G., Hibernate in Action, Dreamtech Press 2007.

Cuya Hoga, http://cuyahoga-project.org/

Dentler J., NHibernate 3.0 Cookbook, Packt Publishing, Birmingham 2010.

Diab H., Frappier M., St-Denis R., A Formal Definition of Function Points for Auto-
mated Measurement of B Specifications, Formal Methods and Software Engineer-
ing, Springer 2002, pp. 483–494.

Diab H., Koukane F., Frappier M., St-Denis R., μ c ROSE: Automated Measurement of
COSMIC-FFP for Rational Rose Real Time, “Information and Software Technol-
ogy” 2005, no. 47, pp. 151–166.

Edagawa T., Akaike T., Higo Y., Kusumoto S., Hanabusa S., Shibamoto T., Function
Point Measurement from Web Application Source Code Based on Screen Transitions
and Database Accesses, “Journal of Systems and Software” 2011, no. 84, p. 976–984.

67Automated Functional Size Measurement for Three-Tier Object Relational Mapping...

Hassan D., Frappier M., St-Denis R., A Formal Definition of COSMIC-FFP for Auto-
mated Measurement of ROOM Specifications, 4th European Conference Software
Measurement and ICT Control 2001.

Ho V. T., Abran A., A Framework for Automatic Function Point Counting from Source
Code, International Workshop on Software Measurement 1999.

ISO/IEC: 19761 Software Engineering-COSMIC-A Functional Size Measurement Method,
International Organization for Standardization, Geneva 2011.

Jenner M. S., Automation of Counting of Functional Size Using COSMIC FFP in UML,
COSMIC Function Points: Theory and Advanced Practices 2011, p. 276.

Keith M., Schnicariol M., Object-Relational Mapping, Apress 2010.

Lamma E., Mello P., Riguzzi F., A System for Measuring Function Points from an
ER–DFD Specification, “The Computer Journal” 2004, no. 47, pp. 358–372.

Marín B., Giachetti G., Pastor O., Measurement of Functional Size in Conceptual Mod-
els: A Survey of Measurement Procedures Based on COSMIC, Software Process and
Product Measurement, Springer 2008, pp. 170–183.

Marín B., Pastor O., Giachetti G., Automating the Measurement of Functional Size of
Conceptual Models in an MDA Environment, Product-Focused Software Process
Improvement, Springer 2008, pp. 215–229.

Monsalve C., Abran A., April A., Measuring Software Functional Size from Business
Process Models, “International Journal of Software Engineering and Knowledge
Engineering” 2011, no. 21, pp. 311–338.

Ozkan B., Turetken O., Demirors O., Software Functional Size: For Cost Estimation
and More, in: Software Process Improvement, Springer 2008, pp. 59–69.

Ozkan B., Demirors O., Formalization Studies in Functional Size Measurement: How
Do They Help?, in: Software Process and Product Measurement, Springer 2009,
pp. 197–211.

Paton K., Automatic Function Point Counting Using Static and Dynamic Code Analy-
sis, International Workshop on Software Measurement 1999.

Rana Gonultas A. T., Run-time Calculation of COSMIC Functional Size via Automatic
Installment of Measurement Code into Java Business Applications, SEAA-EURO-
MICRO 2015.

Richardson C., Orm in Dynamic Languages, Communications of the ACM 52 2009,
pp. 48–55.

Sag M. A., Tarhan A., Measuring COSMIC Software Size from Functional Execution
Traces of Java Business Applications, Software Measurement and the International
Conference on Software Process and Product Measurement (IWSM–MENSURA),
Joint Conference of the International Workshop 2014, IEEE, pp. 272–281.

Soubra H., Chaaban K., Functional Size Measurement of Electronic Control Units Soft-
ware Designed Following the AUTOSAR Standard: A Measurement Guideline Based
on the COSMIC ISO 19761 Standard, IWSM/MENSURA 2010.

68 Baris Özkan

Symons C., Lesterhuis A., Guideline for Sizing Service-Oriented Architecture Software,
v.1.1, The Common Software Measurement International Consortium (COSMIC)
2015.

Taylor R. N., Medvidovic N., Dashofy E. M., Software Architecture Foundations, Theory
and Practice, John Wiley and Sons Inc. 2010.

Živkovič A., Rozman I., Heričko M., Automated Software Size Estimation Based on
Function Points Using UML models, “Information and Software Technology” 2005,
no. 47, pp. 881–890.

