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Summary
We give a review and a cross section of stochastic ordering problems from the 

Bayesian point of view – the stochastic ordering of posterior distributions, marginal 
distributions of data and predictive distributions under order assumptions on sampling 
distributions and prior distributions. The importance for risk theory and application 
to actuarial problems are commented.
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1. Introduction

The problem of interest is how stochastic orders of sampling and prior dis­
tributions may be transferred to posterior and marginal data distributions and 
what is the change of the posterior distributions in respect of prior ones from 
the aspect of stochastic orders. We collect and interpret useful existing results 
from this point of view. Then we consider predictive distributions – the main 
Bayesian tool for statistical prediction, by giving some statements derived from 
previous results. This is of interest for the reliability theory, survival analysis, 
comparing risks and also for Bayesian robustness as a look at consequences of 
various choices of prior distributions.2

1	 Instytut Ekonometrii, Szkoła Główna Handlowa w Warszawie, ul. Madalińskiego 6/8, 
02-513 Warszawa, mecz@sgh.waw.pl.

2	 See M. Męczarski, Stochastic orders and classes of prior distributions, “Statistics in Tran­
sition” 2004, vol. 6, no. 7, pp. 1121–1129.
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Comparing risks is considered by eminent authors as an essential part of 
actuarial practice.3 Actuarial risks are represented in the form of random var­
iables and their distributions, so stochastic orders constitute mathematical tools 
to handle such problems. The stochastic ordering issues are often considered 
in the insurance risk theory. Bäuerle and Müller4 establish consistency and 
bounds for risk measures implied by the usual stochastic and convex orders. 
Moreover, a large part of the theory of stochastic orders was developed within 
the risk theory.5 The implementation for actuarial practice is clear: for example, 
Heilmann and Schröter6 give a number of straightforward applications, Denuit 
and Lefèvre7 define some stochastic orders for discrete distributions and apply 
them for bounds of premium or of ruin probabilities.

Denuit et al.8 enumerate a number of desirable properties for stochastic 
orderswith respect to their usefulness in comparing risks: stability under mix­
ture, stability under convolution, under compounding and under limit. Our aim 
is to investigate the stability under the operations on probability distributions 
which are typical in Bayesian statistic, because of the importance of the Bayes­
ian approach, as well the ideas used as techniques for actuarial issues. These 
are computing posterior distributions, predictive distributions and marginal 
distributions of data. The case of the marginal distribution of data is covered 
by the case of the mixtures, but we treat it as well because of the completeness 
and indispensability for predictive distributions.

Let us recall the general Bayesian statistical model (X.M,P ={Pθ}θ∈Θ ), where 
X is a sample space, M – a σ -algebra of events in and P  is a family of proba­
bility distributions. Moreover, we assume that there exists a probability space 
(Θ,F,Π), where Π  is a prior distribution. Then X  is a random sample with the 
values x ∈X , X|T = θ ~ f (⋅|θ ), where T is a Θ -valued random variable, T ~Π.  
Now the formula

3	 See M. Denuit et al., Actuarial Theory for Dependent Risks: Measures, Orders and Models, 
Wiley, New York 2005 and R. Kaas et al., Modern Actuarial Risk Theory Using R, Springer, 
Berlin-Heidelberg 2008.

4	 N. Bäuerle, A. Müller, Stochastic orders and risk measures: Consistency and bounds, “In­
surance: Mathematics and Economics” 2006, vol. 38, pp. 132–148.

5	 Denuit et al., op.cit.
6	 W. R. Heilmann, K. J. Schröter, Orderings of risks and their actuarial applications, in: 

Stochastic Orders and Decisions under Risk, eds Mosler K., Scarsini M., IMS Lecture Notes 
– Monograph Series 19, Institute of Mathematical Statistics, Hayward, CA 1991, pp. 157–173.

7	 M. Denuit, C. Lefèvre, Some new classes of stochastic order among arithmetic random 
variables, with applications in actuarial sciences, “Insurance: Mathematics and Economics” 
1997, vol. 20, pp. 197–213.

8	 M. Denuit et al., op.cit., chapter 3.
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π(θ| x)=
f (x|θ )π(θ )

Θ∫ f (x|θ )π(θ )dθ

gives the posterior distribution and

mπ (x)=
Θ∫ f (x|θ )π(θ )dθ = Eπ f (x|T)

is the marginal density of the sample.
Like many authors of papers on Bayesian statistics we often use the same 

notation θ  for a random variable, for its values and for arguments of prior 
densities and cumulative distribution functions unless a misunderstanding may 
occur. Throughout the paper actually Θ ⊂ R  and consequently we integrate with 
respect to the Lebesgue measure unless it is done with respect to the counting 
measure in case of discrete distributions. For fundamentals and details of Baye­
sian approach see e. g. Robert’s monograph.9

2. Usual stochastic and dispersive orders

As we know, stochastic orders are order relations in the set of probability 
distributions on a fixed probability space or, equivalently, in the set of random 
variables on this probability space with these distributions. In some economic 
applications the term “stochastic dominance” is often used. However, a number 
of stochastic orderings is not included into the scheme of stochastic dominance 
of successive orders. Basic definitions and concepts are explained in the mon­
ographs by Marshall, Olkin and Arnold,10 Shaked and Shanthikumar,11 Müller 
and Stoyan12 and Denuit et al.13 We take into consideration some chosen types 
of orders: the usual stochastic order (defined by magnitude of tail probabilities 

9	 C. Robert, Bayesian Choice, Second Edition, Springer, New York 2007.
10	 A. W. Marshall, I. Olkin, B. Arnold, Inequalities. Theory of Majorization and Its Applica-

tions, Second Edition, Springer, New York 2011; earlier edition: A. W. Marshall, I. Olkin, In-
equalities. Theory of Majorization and Its Applications, Academic Press, New York 1979.

11	 M. Shaked, J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic 
Press, Boston 1994 and M. Shaked, J. G. Shanthikumar, Stochastic Orders, Springer, New 
York 2007.

12	 A. Müller, D. Stoyan, Comparison Methods for Stochastic Models and Risks, J. Wiley, 
Chichester 2002.

13	 Denuit et al., op.cit.



342 ﻿  Marek Męczarski﻿

– see below) and the dispersive order (defined by a measure of dispersion of 
a probability distribution), which seem to be the simplest to interpret and use. 
Then we move to the likelihood ratio order and in the last section to the increa­
sing convex (stop-loss) order. Below we recall definitions and properties which 
are necessary hereafter.

Definition 1. Let X  and Y  be random variables on a fixed probability space 
with cumulative distribution functions F  and G , respectively. The random varia­
ble X  is said to be less than Y  in the usual stochastic order (we write X ≤

st
Y ), 

if (∀x ∈R)  F(x) ≥ G(x)  or equivalently 1− F(x) ≤1−G(x).
We see that Definition 1 organises probability distributions by their tail prob­

abilities, i. e. probabilities of large values. It can be proved14 that Definition 1 
is equivalent to the relation Eϕ(X ) ≤ Eϕ(Y )  for any nondecreasing function ϕ  
such that both sides exist. Observe also that X ≤

st
Y  and Y ≤

st
X  is equivalent 

to equal distributions of X  and Y . The usual stochastic order is sometimes 
called the first order stochastic dominance.

In Bayesian statistical analysis order properties for conditional distributions 
are needed, as follows.

Theorem 1.15 Let X , Y  and T  be random variables such that the conditional 
distributions satisfy the following relation:

(∀θ ∈Θ) X|T =θ ≤
st

Y|T =θ.

Then X ≤
st

Y .

The assumption corresponds to the usual stochastic order of sampling dis­
tributions. The conclusion is equivalent to  F

m
π ≤

st
G

m
π , where the subscript m  

denotes marginal distributions of observations and the superscript π  stresses 
the dependence of the prior Π .

In terms of mixtures of distributions we can say that the usual stochastic 
order is closed with respect to mixtures and in terms of Bayesian statistics that 
the usual stochastic order of sampling distributions may be transferred to mar­
ginal distributions of data.

Theorem 2.16 Let us consider the family of distributions {F(⋅|θ ),θ ∈Θ}. Let 
X(θ )  be a random variable with the distribution function F(⋅|θ ). For random 

14	 See A. W. Marshall, I. Olkin, op.cit.
15	 M. Shaked, J. G. Shanthikumar, Stochastic Orders, Springer, New York 2007.
16	 Ibidem.
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variables Ti , i=1,2 , sharing their support included in Θ  and with distribution 
functions Π

i
, i=1,2 , let Yi

= X(T
i
)  denote random variables with the distribu­

tion functions H
i  defined by

H
i
(x)=

Θ∫ F(x|θ )dΠ
i
(θ ), x ∈R.

If X(θ ) ≤
st

X( ′θ )  for all θ , ′θ ∈Θ  such that θ ≤ ′θ  and if Π
1
≤

st
Π

2
, then  

Y
1
≤

st
Y

2
.

In terms of Bayesian statistics this means that the stochastic order of prior 
distributions provided monotonicity of sampling distributions with respect to the 
stochastic order is transferred to marginal distributions of data.

From the Bayesian point of view questions of interest concern posterior 
distributions and are as follows:
1)	 Does the condition X(θ ) ≤

st
X( ′θ )  for all θ , ′θ ∈Θ  such that θ ≤ ′θ  imply

T| X = x ≤
st

T| X = ′x , where x ≤ ′x ?

2)	 Does the relation Π
1
≤

st
Π

2
, where T

i
!Π

i
 : T

i
!Π

i
, i=1,2 , imply

T
1
| X = x ≤

st
T

2
| X = x?

These properties are not true, i.e. we cannot say that posterior distributions 
preserve the usual stochastic order of sampling distributions or of prior distri­
butions (see Section 3).

3. Weighted distributions

The structure of posterior distributions coincides with the structure of 
weighted distributions.17 Order properties of the weighted distributions are quite 
well known (see below).

17	 C. R. Rao, On discrete distributions arising out of method of ascertainment, Sankhyā Ser. 
A, 1965, vol. 27, pp. 311–324; G. P. Patil, C. R. Rao, Weighted distributions and size biased 
sampling with applications to wildlife populations and human families, “Biometrics” 1978, 
vol. 34, pp. 179–189.
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Definition 2. Let X  be a random variable, F  – its cumulative distribution 
function (cdf) and f  – the corresponding density; let w  be a nonnegative weight 
function. We assume Ew(X )  to exist. The weighted F  distribution under the 
weight function w  is a distribution with the following cumulative distribution 
function:

!F
w
(x)=

1
Ew(X ) −∞

x

∫ w(t)dF(t)

and with the density !fw
(x)=

w(x)
Ew(X )

f (x) .

It is evident that posterior distributions coincide with prior distributions 
weighted by likelihood functions, i. e. w(θ )= f (x|θ )  for a given x ∈X . This 
observation seems to be “suspended” or even undirectly suggested by Shaked 
and Shanthikumar,18 but it is not expressed explicitly.

For weighted distributions there exist many results on preserving various 
stochastic orderings. Usually assumptions on weight functions are required. 
The usual stochastic order is not preserved under weighting without such 
assumptions,19 so, in general, it is not preserved under computing posterior 
distribution, either.

Let us consider another interesting stochastic ordering, the dispersive order, 
as follows.

Definition 3.20 Let X  and Y  be random variables with distribution functions 
F  and G , respectively. Let F−1 and G−1 denote the inverses of the distribution 
functions, continuous on the right, i. e. F−1(α )=inf{x ∈R :F(x) ≥ α}. It is said 
that the variable X  is less than Y  in the dispersive order (we write X ≤

disp
Y )  

if and only if (∀0<α ≤ β <1)  F−1(β )− F−1(α ) ≤ G−1(β )−G−1(α ).
An equivalent condition is that the function G−1(F(x))− x is nondecreasing 

in x. This is a consequence of the fact that the definition means that the function 
G−1(y)− F−1(y) is nondecreasing with respect to  y ∈(0,1). We may observe that the 
dispersive order consists in comparing differences between any pair of quantiles.

The following theorem gives a relationship between the usual stochastic and 
dispersive orders.

18	 M. Shaked, J. G. Shanthikumar, Stochastic Orders, Springer, New York 2007, chapter 1.C.
19	 See J. Bartoszewicz, M. Skolimowska, Preservation of classes of life distributions and sto-

chastic orders under weighting, “Statistics and Probability Letters” 2006, vol. 76, pp. 587–596.
20	 M. Shaked, J. G. Shanthikumat, op.cit.
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Theorem 3.21 If the random variables X  and Y  satisfy the equality 
inf suppX =inf suppY  (where suppX  means the support of the probability dis­
tribution of a random variable X ), then X ≤

disp
Y  implies X ≤

st
Y .

The dispersive ordering is not closed in respect of weighting22 unless as­
sumptions on monotonicity of weight functions are made. However, a likelihood 
function has a maximum point at a maximum likelihood estimate and there are 
few statistical models where it can be monotone (models with a parameter as 
a bound of a probability support). Bartoszewicz23 proved the following theorem 
on weighted distributions which may extend such restrictions for the closeness 
of the dispersive ordering in respect of weighting.

Theorem 4.24 Let F and G be absolutely continuous. Let F have the DFR 

property (decreasing failure rate, i. e. the function 
f (x)

1− F(x)
 is nonincreasing) 

and G have the IRFR property (increasing reversed failure rate, i. e. the function 

g(x)
G(x)

 is nondecreasing). Let w  be a  weight function being of the form 

w(x)=ϕ(v(x)) , where v  is positive decreasing log-convex (i.e. the logarithm of 
this function is convex) on A= suppF ∪ suppG  and ϕ  is positive increasing 
log-convex on the set v(A). If X ≤

disp
Y, then X

w
≤

disp
Y

w
.

The usefulness of Theorem 4 to the Bayesian approach depends on whether 
a typical likelihood function may be presented in the form l(θ ,x)=ϕ

x
(v

x
(θ )).

Remark. In many useful statistical models likelihood functions come from the 
exponential family of distributions: l(θ ,x)= h(x)ec(θ )t( x)−b(θ ). If we take ϕ x

(z)= h(x)ez 
and v

x
(θ )= c(θ )t(x)− b(θ ), then we obtain that the function ϕ

x
 is positive, de­

creasing and log-convex. Properties of v
x  depend on the probability distribution 

of interest. It should be:
(i) c(θ )t(x)− b(θ )>0,

(ii) ′c (θ )t(x)− ′b (θ ) ≤ 0,

(iii)
d2

dθ 2
log[c(θ )t(x)− b(θ )] ≥ 0,

21	 Ibidem.
22	 J. Bartoszewicz, M. Skolimowska, op.cit.
23	 J. Bartoszewicz, On a representation of weighted distributions, “Statistics and Probabil­

ity Letters” 2009, vol. 79, pp. 1690–1694.
24	 Ibidem.
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where
(iii)  is equivalent to [ ′′c (θ )t(x)− ′′b (θ )][c(θ )t(x)− b(θ )]− [ ′c (θ )t(x)− ′b (θ )]2 ≥ 0.

This may depend also on the observed x . Observe that (i)  and (iii)  imply 
′′c (θ )t(x)− ′′b (θ ) ≥ 0. Now, it is easy to see that for some important models these 

inequalities may be contradictive, for example for the normal, Poisson and 
exponential models.

For a Bayesian robustness approach25 it would be interesting to construct 
intervals of distributions generated by stochastic orders. In such a case, com­
paring pairs with different particular assumptions for a predecessor and a suc­
cessor is not relevant.

4. The likelihood ratio order

The likelihood ratio order – as below – seems less intuitive than the usual 
stochastic and dispersive orders. However, the monotone likelihood ratio is a well 
known assumption to construct tests of one-sided hypotheses and actually may 
be quite familiar in statistics.

Definition 4.26 Let X  and Y  be real random variables with distribution 
functions F  and G , respectively. It is said that the variable X  is less than Y  
in the likelihood ratio (LR) order (we write X ≤

LR
Y ) if and only if the ratio g(t)

f (t)
 

is an increasing function of t  on the set suppX ∪ suppY .
We accept the convention 

a
0

=+∞  for a>0 .

Remark. Some equivalent conditions for Definition 4 are as follows:

(i) A ≤ B⇒ P(Y ∈B)
P(X ∈B)

≥ P(Y ∈A)
P(X ∈A)

for any Borel sets A  and B , where A ≤ B  means that (∀x ∈A,y ∈B) x ≤ y ;

(ii) F(⋅| A) ≤
st

G(⋅| A)

for any Borel set A .

25	 See, e.g., M. Męczarski, op.cit.
26	 M. Shaked, J. G. Shanthikumar, op.cit.
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The second condition means the usual stochastic order for any pair of condi­
tional distributions under any random event which implies that F ≤

LR
G ⇒ F ≤

st
G 

as well.
(iii) GF−1  is a convex function.

The third condition is quite easy to prove and it is related to a general way 
of defining stochastic orders.27

For the likelihood ratio order it can be shown that the conclusions of Theo­
rems 1 and 2 hold, i. e. it is closed under mixtures. The likelihood ratio order is 
closed under weighting for an arbitrary weight function.28 For posterior distri­
butions explicit precise statements and proofs are as follows.

Theorem 5. If the distribution of X  is increasing with respect to the LR order 
in θ , then the conditional distribution of θ  under X = x  is increasing in  x  with 
respect to the LR order, i. e. if Pθ ≤LR

P ′θ  for θ ≤ ′θ , then Π(⋅| X = x) ≤
LR

Π(⋅| X = ′x ) 
for x ≤ ′x .

Proof. We have π(θ| x)=
f (x|θ )π(θ )

mπ (x)
. It should be shown that 

π(θ| ′x )
π(θ| x)

 is an 

increasing function of θ . So let ′θ >θ . We write

π( ′θ | ′x )
π( ′θ | x)

=
f ( ′x | ′θ )π( ′θ )mπ (x)
mπ ( ′x )f (x| ′θ )π( ′θ )

=
f ( ′x | ′θ )mπ (x)
f (x| ′θ )mπ ( ′x )

.

But since Pθ ≤LR
P ′θ , we have

f ( ′x | ′θ )
f ( ′x |θ )

≥ f (x| ′θ )
f (x|θ )

,

what implies
f ( ′x | ′θ )
f (x| ′θ )

≥ f ( ′x |θ )
f (x|θ )

.

Thus,

	
π( ′θ | ′x )
π( ′θ | x)

≥
f ( ′x |θ )π(θ )mπ (x)
mπ (x ')f (x|θ )π(θ )

=
π(θ| ′x )
π(θ| x)

. � 

27	 See M. Shaked, J. G. Shanthikumar, op.cit.; E. I. Lehmann, J. Rojo, Invariance directional 
orderings, “The Annals of Statistics” 1992, vol. 20, pp. 2100–2110; M. Frąszczak, J. Barto­
szewicz, Invariance of relative inverse function orderings under compositions of distributions, 
“Applicationes Mathematicae” 2012, vol. 39, pp. 283–292.

28	 J. Bartoszewicz, M. Skolimowska, op.cit.
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This property means that the LR order of sample distributions is preserved 
by posterior distributions. It was given by Shaked and Shanthikumar29 in the 
form of a remark after Whitt.30

Theorem 6. If Π
1
≤

LR
Π

2
, then Π

1
(⋅| X = x) ≤

LR
Π

2
(⋅| X = x).

Proof. It should be shown that 
π

2
(θ| x)

π
1
(θ| x)

 is a nondecreasing function of θ . 
Let ′θ ≥ θ . Then

π
2
( ′θ | x)

π
1
( ′θ | x)

=
f (x| ′θ )π

2
( ′θ )mπ

1
(x)

mπ
2
(x)f (x| ′θ )π

1
( ′θ )

=
π

2
( ′θ )mπ

1
(x)

mπ
2
(x)π

1
( ′θ )

,

but
π

2
( ′θ )

π
1
( ′θ )

≥
π

2
(θ )

π
1
(θ )

,

hence

	
π

2
( ′θ | x)

π
1
( ′θ | x)

≥
f (x|θ )π

2
(θ )mπ

1
(x)

mπ2
(x)f (x|θ )π

1
(θ )

=
π

2
(θ| x)

π
1
(θ| x)

. 	 

This property means that the LR order of prior distributions is preserved 
by posterior distributions. The result is cited by Shaked and Shanthikumar31 as 
a remark after Spizzichino.32 The version for weighted distribution was shown, 
as mentioned above, by Bartoszewicz and Skolimowska33 (cited also by Shaked 
and Shanthikumar34).

The LR order implies the usual stochastic ordering. This means that the usual 
stochastic order may be transferred onto posterior distributions, under the LR 
ordering, which is a stronger assumption.

29	 M. Shaked, J. G. Shanthikumar, op.cit.
30	 W. Whitt, A note on the influence of the sample on the posterior distribution, “Journal of 

American Statistical Association” 1979, vol. 74, pp. 424–426.
31	 M. Shaked, J. G. Shanthikumar, op.cit.
32	 F. Spizzichino, Subjective Probability Models for Lifetimes, Chapman and Hall/CRC, Boca 

Raton 2001.
33	 J. Bartoszewicz, M. Skolimowska, op.cit.
34	 M. Shaked, J. G. Shanthikumar, op.cit.
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5. Prior and posterior distributions – ordering comparisons

Hereafter we discuss relationship between prior and posterior distribution 
with respect to the considered stochastic orders. Bartoszewicz and Skolimowska35 
proved the following implication for weighted distributions.

Theorem 7. (1) If the weight function w  is increasing, then F ≤
LR
!F
w
; (2) if 

w  is decreasing, then !F
w
≤

LR
F.

However, if we need w  as a likelihood function, its monotonicity rarely holds. 
Let us denote Π*(θ )=Π(θ| x), the posterior cdf. We can use this notation when 
correspondence to any fixed data x  can be omitted. Błażej36 gave, in terms of 
weighted distributions, equivalent conditions for orderings, defined by properties 
of the following function 

⌣
Π

x
:

⌣
Π

x
(t)=

1
mπ (x) 0

Π−1(t )

∫ f (x|τ )π(τ )dτ , t ∈(0,1).

This is the value of the posterior cumulative distribution function at the prior 
t -quantile, i. e. 

⌣
Π

x
(t)=Π*(Π−1(t)). It is a cumulative distribution function (on 

the interval (0,1) ) as well. It holds 
⌣
Π

x
(Π(θ ))=Π*(θ ). It can be shown as follows.

Theorem 8.37 Under the notation as above we have
(i)	 Π ≤

LR
Π* ⇔

⌣
Π

x
 is convex on the interval (0,1) and

Π ≥
LR

Π* ⇔
⌣
Π

x
 is concave on the interval (0,1);

(ii)	Π ≤
st
Π* ⇔

⌣
Π

x
(u) ≤ u for any u ∈(0,1)  and

Π ≥
st
Π* ⇔

⌣
Π

x
(u) ≥ u for any u ∈(0,1).

Example. Let us consider the Bayesian normal model with the mean as 
a parameter. Let the prior distribution be normal N(µπ ,τπ

2 ), i.e. with the cumu­

lative distribution function Π(θ )=Φ
θ − µπ

τπ

⎛

⎝
⎜

⎞

⎠
⎟ . The posterior cdf is then Π*(θ )=Φ

θ − µ
x

τ
x

⎛

⎝
⎜

⎞

⎠
⎟ 

Π*(θ )=Φ
θ − µ

x

τ
x

⎛

⎝
⎜

⎞

⎠
⎟ , where µ

x
 and τ

x
 may be computed by well known formulae. Then

⌣
Π

x
(u)=Π*(Π−1(u))=Φ

Π−1(u)− µ
x

τ
x

⎛

⎝
⎜

⎞

⎠
⎟ .

35	 J. Bartoszewicz, M. Skolimowska, op.cit.
36	 P. Błażej, Preservation of classes of life distributions under weighting with a general weight 

function, “Statistics and Probability Letters” 2008, vol. 78, pp. 3056–3061.
37	 P. Błażej, op.cit.
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A quantile of a normal distribution is easy to compute with the quantile of 
the standard normal distribution N(0,1)  as Π−1(u)=τΦ−1(u)+ µ . This implies

⌣
Π

x
(u)=Φ

τπ

τ
x

Φ−1(u)−
µ

x
− µπ

τ
x

⎛

⎝
⎜

⎞

⎠
⎟ .

Now
(∀u ∈(0,1))

⌣
Π

x
(u) ≤ u ⇔

(∀u ∈(0,1))Φ−1(u)
τπ

τ
x

−1
⎛

⎝
⎜

⎞

⎠
⎟ ≤

µ
x
− µπ

τ
x

⇔

(∀y ∈R)
τπ

τ
x

−1
⎛

⎝
⎜

⎞

⎠
⎟ y ≤

µ
x
− µπ

τ
x

⇔

(∀y ∈R) τπ − τ x( )y ≤ µ
x
− µπ ,

what may be true only for τπ =τ
x

 but this does not hold. This means that in the 
Bayesian normal model we have not usual stochastic order between prior and 
posterior distributions (which is not surprising). Consequently, the LR ordering 
does not hold, either. � 

Let us consider another aspect of comparing distribution in respect of sto­
chastic orders. Lehmann and Rojo38 and also Frąszczak and Bartoszewicz39 
investigated pairs of distributions in regard to further or closer relative location 
of distributions each from or to other. This requires a precise definition which 
will be given below. Thus we ask whether the ordering for a pair of prior distri­
butions Π

1
≤

LR
Π

2
 may imply that for posterior distributions satisfying Π1

* ≤
LR

Π
2
*  

the distribution Π2
*  is further to the right of Π1

*  than Π
2
 is from Π

1
. The precise 

definition of the expression “is further to the right” was given by Lehmann and 
Rojo.40 To avoid developing more theory than actually needed, we give a precise 
but not the most intuitive form of the definition.

38	 E. I. Lehmann, J. Rojo, op.cit.
39	 M. Frąszczak, J. Bartoszewicz, op.cit.
40	 E. I. Lehmann, J. Rojo, op.cit. See also M. Frąszczak, J. Bartoszewicz, op.cit.
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Definition 5. Let F
1
≤

LR
G

1
 and F

2
≤

LR
G

2
. We say that the distribution G

2  is 
further to the right of F

2  than G
1  is from F

1  if

G
1
F

1
−1 ≤

LR
G

2
F

2
−1.

Remarks. (i) The functions G
i
F

i
−1 , i=1,2 , are cumulative distribution func­

tions. (ii) The third equivalent condition for the LR order implies that the 
condition G

1
F

1
−1 ≤

LR
G

2
F

2
−1  is equivalent to convexity of the function G

2
F

2
−1F

1
G

1
−1 .

Moreover, this notion is related to a metric in the space of probability 
distributions. Lehmann and Rojo41 define consistency of a metric with a fixed 
stochastic order. Details do not matter here, but this theory results in that the 
metric consistent with the LR order is

d(F,G)=
x

sup log
g(x)
f (x)

.

We have also the following theorem.
Theorem 9.42 Under the conditions of Definition 5, if the distribution G

2  is 
further to the right of F

2  than G
1  is from F

1  then d(F
1
,G

1
) ≤ d(F

2
,G

2
).

Certainly there is no equivalence, since the inequality for the distance does 
not imply the ordering of pairs of distributions.

Let us rewrite the above results for prior and posterior distributions.
Corollary. If Π

1
≤

LR
Π

2
, what follows Π1

* ≤
LR

Π
2
* , then:

(i)	 Π
2
*  is further to the right of Π1

*  than Π
2
 is from Π

1
 if and only if the 

function Π2
* (Π

1
* )−1Π

1
Π

2
−1  is convex;

(ii)	 if Π2
*  is further to the right of Π1

*  than Π
2
 is from Π

1
 then

θ∈Θ
sup log

π
2
(θ )

π
1
(θ )

≤
θ∈Θ
sup log

π
2
(θ )

π
1
(θ )

⋅
mπ

1
(x)

mπ
2
(x)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

Let us comment these results as follows: analysis of convexity of the com­
posed function Π2

* (Π
1
* )−1Π

1
Π

2
−1  is involved even for simple Bayes models. Further, 

when considering the necessary condition from Theorem 9 we observe the in­

fluence of the factor 
mπ

1
(x)

mπ
2
(x)

. In Bayesian analysis the value of the marginal 

41	 E. I. Lehmann, J. Rojo, op.cit.
42	 Ibidem.
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density mπ (x)  for current data x  is used as an indicator of how much the prior 
agrees with the data. If it is close to 0, the correspondence is weak. Now, if for 
a given data point x ∈X  we have mπ

1
(x)  close to 0 and mπ

2
(x)  moderate or 

large (or reversely), then the value of this factor make the argument of the log­
arithmic function close to 0 (or large). Then the necessary condition that Π2

*  is 
further to the right of Π1

*  than Π
2
 is from Π

1
 is satisfied. This is intuitively right, 

because very large or very close to 0 value of 
mπ

1
(x)

mπ
2
(x)

 for a given x  means that 

the values of mπ
i
(x) , i=1.2  are not close each to other, what means further that 

one of the priors Π
i
 much better corresponds to the data that the other one. 

And this should result in a bigger distance of posterior distributions (given the 
data x ) than of the prior ones.

However, practical computations for fixed statistical models may be trou­
blesome. The distance defined as above may be infinite for pairs of distributions 
in many useful statistical models, in particular for the families with monotone 
likelihood ratio, since the ratio may be unbounded. For example in one-para­
meter exponential families of the form

f (t|λ)= h(t)ec(λ )T (t )−b(λ )

we obtain the logarithm of the likelihood ratio in the form

log
f (t|λ

1
)

f (t|λ
2
)
=T(t)(c(λ

1
)− c(λ

2
)),

which may be easily growing to infinity in  t .

6. Stochastic orderings for predictive distributions

Statistical prediction consists in predicting an unknown (unobservable, future) 
value of a random variable Y  on the basis of a random sample Z

n
=(X

1
,..., X

n
)

. It can be made with a statistic Ŷ
n

= Ŷ(Z
n
)  which minimises the expected loss 

(the expected prediction error) Δ= EL(Y ,Ŷ
n
)  and it is well known that for the 

quadratic loss function the optimum predictor is E(Y|Z
n

= z
n
). Also predictive 

confidence intervals may be constructed. When using the Bayesian statistical 
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model we can construct predictive distribution which in prediction is analogous 
to the posterior distribution in estimation.43

Definition 6. Let us assume that the predicted variable Y  has a conditional 
density g(y|θ ,z

n
) . The posterior distribution of θ  is denoted by π(θ|z

n
) . The 

predictive distribution of Y  under the data z
n  and the prior distribution π  is 

the conditional distribution with the density function

p
G
π (y|z

n
)=

Θ∫ g(y|θ ,z
n
)π(θ|z

n
)dθ.

It has the structure of a mixed distribution and is a conditional marginal dis­
tribution of Y  under z

n. For the simple case of Y = X
n+1 with X

i, i=1,2,...,n +1, 
conditionally independent under θ  we obtain p(x

n+1
|z

n
)=

Θ∫ f (x
n+1

|θ )π(θ|z
n
)dθ, 

i.e. the marginal distribution of a single observation in case when the posterior 
distribution takes the role of the prior.

For the predictive distributions we make use of the results on the ordering 
of marginal distributions (mixtures) and of posterior distributions. We obtain 
the properties as follows:

Theorem 10. (1) The usual stochastic order of distributions of the predicted 
variable (conditional in  θ ) may be transferred to predictive distributions for 
any given data z

n, that is if

(∀θ ∈Θ) F(⋅|θ ,z
n
) ≤

st
G(⋅|θ ,z

n
)

then
F

p
π (⋅|z

n
) ≤

st
G

p
π (⋅|z

n
),

where F(⋅|θ ,z
n
) means the cumulative distribution function corresponding 

to the density f (⋅|θ ,z
n
)); for G(⋅|θ ,z

n
) – analogously; and F

p
π (⋅|z

n
) denotes the 

predictive cdf corresponding to the predictive density

p
F
π (y|z

n
)=

Θ∫ f (y|θ ,z
n
)π(θ|z

n
)dθ ,

G
p
π (⋅|z

n
) – analogously.

(2) If for distributions of the predicted variable Y  we have

(∀z
n
,θ ≤ ′θ ,θ , ′θ ∈Θ) F(⋅|θ ,z

n
) ≤

LR
F(⋅| ′θ ,z

n
)

43	 See C. Robert, op.cit.
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and if Π
1
≤

LR
Π

2
, then for the predictive distributions

F
p

π
1(⋅|z

n
) ≤

LR
F

p

π
2 (⋅|z

n
).

The conclusion (1) is a natural consequence of the form of predictive distri­
butions as mixtures and of Theorems 1 and 2. The conclusion (2) for predictive 
distributions requires the assumption on the LR ordering, because the usual 
stochastic ordering may be transferred to posterior distribution only under LR 
ordering.

Stochastic orders for posterior and predictive distributions imply comparison 
properties for estimators and predictors. This problem is addressed by Nowak44 
and Bartoszewicz and Nowak.45 In the latter paper, the coincidence between pos­
terior distributions and weighted prior distributions with likelihood functions as 
weight functions seems to be explicitly noticed for the first time in the literature.

7. Increasing convex (stop-loss) order

Finally we turn to another stochastic ordering which has important appli­
cations to insurance, i. e. the increasing convex order known also as the stop- 
loss order.

Definition 7.46 Let X  and Y  be random variables on a fixed probability 
space with cumulative distribution functions F  and G , respectively. The random 
variable X  is said to be less than Y  with respect to the increasing  t ∈R convex 
order (we write X ≤

icx
Y ), if Ef (X ) ≤ Ef (Y )  for any increasing convex function f.

If the assumption on the monotonicity is relaxed, then we deal with the 
convex order, which we write as X ≤

cx
Y . In particular, X ≤

cx
Y ⇐ X ≤

icx
Y  and  

EX = EY .
Remark 1. In insurance47 mathematics the increasing convex order is called 

the stop-loss order: X ≤
SL

Y , because X ≤
icx

Y  ⇔  E(X − t)+ ≤ E(Y − t)+  for all. 

44	 P. Nowak, Stochastic Ordering of Estimators (in Polish), Ph. D. Dissertation, Institute of 
Mathematics, University of Wrocław 2012.

45	 J. Bartoszewicz, P. Nowak, Monotonicity of Bayes estimators, “Applicationes Mathemati­
cae” 2013, vol. 40, pp. 393–404.

46	 M. Shaked, J. G. Shanthkumar, op.cit.
47	 A. Müller, D. Stoyan, op.cit.
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The function φ
X
(t) = E(X − t)+ =

t

+∞

∫ (1− F
X
(z))dz  is called the integrated survival 

function or the stop-loss transform. This formula describes the optimum net 
stop-loss insurance premium in reinsurance contracts.

Remark 2. In terms of the integrated survival function we can also charac­
terise the usual stochastic order, since X ≤

st
Y  ⇔  ϕ

Y
(t)−ϕ

X
(t)  is a decreasing 

function. Of course, X ≤
SL

Y  ⇔  ϕ
Y
(t)−ϕ

X
(t) ≥ 0  for all t ∈R. We can easily see 

that X ≤
st

Y  implies ϕ
Y
(t)−ϕ

X
(t) ≥ 0, so under X ≤

st
Y  we have X ≤

SL
Y  as well.

Properties.48

(1)	 If X ≤
icx

Y  and Z  is a random variable independent of X  and Y , then 
X + Z ≤

icx
Y + Z.

(2)	Let X, Y  and T  be random variables such that the conditional distributions 
satisfy the following relation:

(∀θ ∈Θ) X|T =θ ≤
SL

Y|T =θ

	 (this means that the definition of the stop-loss order is satisfied by f corre­
sponding conditional distributions). Then X ≤

SL
Y , which means that the 

stop-loss order is closed under mixtures and in Bayesian terms it may be 
transferred to marginal distributions of data. This is analogous to Theorem 
1 and further similar properties.

(3)	We have also a property analogous to Theorem 2: let us consider the fa­
mily of distributions {F(⋅|θ ),θ ∈Θ}. Let X(θ )  be a random variable with 
the distribution function F(⋅|θ ). For random variables T

i, i=1,2, sharing 
their support included in  Θ  and with a distribution functions Π

i
, i=1,2, 

let Y
i
= X(T

i
)  denote random variables with the distribution functions H

i   
defined by

H
i
(x)=

Θ∫ F(X|θ )dΠ
i
(θ ), x ∈R

�If X(θ ) ≤
SL

x( ′θ )  for all θ , ′θ ∈Θ  such that θ ≤ ′θ  and if T
1
≤

SL
T

2
, then  

Y
1
≤

SL
Y

2
.

48	 A. Müller, D. Stoyan, op.cit.; M. Shaked, J. G. Shanthikumar, op.cit.
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(4)	We have not got a property of transferring the stop-loss order from sam­
pling or prior distributions onto posterior distributions without additional 
assumptions. Recall that if X ≤

LR
Y  then X ≤

st
Y , which implies X ≤

SL
Y .

This allows us to make use of Theorems 5 and 6 assuming that the variables 
of interest ordered with respect to the stop-loss order are also ordered with res­
pect to the likelihood ratio order. Or easier, if we start from the likelihood ratio 
order which is transferred to posterior, marginal and predictive distributions, 
we arrive at the transferring of the stop-loss order to resulting distributions.

However, there exist pairs of random variables which are ordered with res­
pect to the stop-loss order and are not with respect to the usual stochastic one 
and consequently with respect to the likelihood ratio order.

Definition 8. A  random variable X  is said to be less dangerous than 
a variable Y , if there exists a point t

0
∈R  such that (∀t < t

0
)F

X
(t) ≤ F

Y
(t)  and 

(∀t ≥ t
0
)F

X
(t) ≥ F

Y
(t) with EX ≤ EY .

Theorem 11.49 Let X  and Y  be random variables on a fixed probability 
space with cumulative distribution functions F  and G, respectively. If X  is less 
dangerous than Y, then X ≤

SL
Y .

The assumption on the intersection of cumulative distribution functions 
contradicts the definition of the usual stochastic order and consequently the 
likelihood ratio order, although the random variables under consideration satisfy 
the stop-loss order.

Let us show some examples on how inequalities for parameters of distribu­
tions correspond to stochastic orders and on implications of stochastic orders.

Examples.
(1)	 It is known50 that if X ~ N(θ

X
,σ

X
2 )  and Y ~ N(θ

Y
,σ

Y
2 ), then the inequality 

θ
X
≤θ

Y
 with σ

X
=σ

Y
 implies X ≤

LR
Y . If we allow σ

X
≤σ

Y
, then X ≤

SL
Y , 

but for σ
X
≠ σ

Y
 the relation X ≤

LR
Y  does not hold.

�Now let Z  have a normal distribution N(θ ,σ 2)  with the normal prior dis­
tribution N(µ,τ )  for the mean. Then the posterior distribution has the form 

N(µ
Z
,σ

Z
2 ) , where µZ

=
σ 2µ + τ 2z
σ 2 + τ 2

 and σ Z
=

σ 2τ 2

σ 2 + τ 2
. Let us consider two 

normal priors Π
i
 in the form N(µ

i
,τ

i
2), i=1,2 , µ

1
≤ µ

2
. Then the ordering 

of means is preserved for posterior means under τ
1
=τ

2
, what implies the 

49	 A. Müller, D. Stoyan, op.cit.
50	 Ibidem.
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likelihood ratio order and consequently the stop-loss order of posterior dis­
tributions. If we allow τ

1
<τ

2
, then the priors Π

1
 i Π

2
 are ordered with re­

spect to the stop-loss order, but the corresponding posteriors are ordered 
only for z>µ .

(2)	Let X ~ Poiss(θ ); assume the conjugate prior distribution, that is Gamma(β ,α ) 

with the density function π(θ )=
α β

Γ(β )
θ β−1e−αθ, θ >0. The posterior distribution 

Π(⋅| x)  is Gamma(β + x,α +1) .
�Let us consider two gamma priors Π

i
 in the form Gamma(β

i
,α

i
) , i = 1,2. 

Then for β
1
≤ β

2
 ∧  α

1
≥ α

2
 we obtain Π

1
≤

LR
Π

2
,51 hence Π

1
≤

SL
Π

2
. Since 

we have also β
1
+ x ≤ β

2
+ x  ∧  α

1
+1≥ α

2
+1 , so for the posterior distributions 

we have Π
1
(⋅| x) ≤

LR
Π

2
(⋅| x) , hence Π

1
(⋅| x) ≤

SL
Π

2
(⋅| x) . Moreover, the or­

dering Π
1
≤

SL
Π

2
 is implied by the inequalities β

1
≥ β

2
 ∧  

β
1

α
1

≤
β

2

α
2

 as well.52 

Then we have β
1
+ x ≥ β

2
+ x, but 

β
1
+ x

α
1
+1

≤
β

2
+ x

α
2
+1

 only for 

x ≥
β

1
− β

2
− (β

2
α

1
− β

1
α

2
)

α
1
−α

2

.

(3)	Let X ~ Ex(θ ) , which means that f (x)=θe−θx ,  x>0. Let us assume the 
conjugate prior Gamma (β ,α ). The posterior distribution Π(⋅| x)  is Gam- 
-Gamma(β +1,α + x).
�Let us consider two gamma priors Π

i
 in the form Gamma(β

i
,α

i
), i = 1,2.  

Again for β
1
≤ β

2
 ∧  α

1
≥ α

2
 we obtain Π

1
≤

LR
Π

2
, hence Π

1
≤

SL
Π

2
. But this 

implies β
1
+1≤ β

2
+1  ∧  α

1
+ x ≥ α

2
+ x, so for the posterior distributions it  

holds Π
1
(⋅| x) ≤

LR
Π

2
(⋅| x), hence Π

1
(⋅| x) ≤

SL
Π

2
(⋅| x). As before, the ordering  

Π
1
≤

SL
Π

2
 is also implied by the inequalities β

1
≥ β

2
 ∧  

β
1

α
1

≤
β

2

α
2

. Then we 

obtain  β
1
+1≥ β

2
+1, but 

β
1
+1

α
1
+ x

≤
β

2
+1

α
2
+ x

 only for x ≤
β

2
α

1
− β

1
α

2
+α

1
−α

2

β
1
− β

2

.

� 

51	 Ibidem.
52	 Ibidem.
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As we can see, the assumption of the likelihood ratio order is essential for 
transferring the usual stochatic and stop-loss orders from sampling or prior 
distributions to posterior distributions.

We recall that the stop-loss order is important because of the significance 
of the stop-loss transform for computing a premium, including the optimum 
reinsurance contract. In particular, it is known that stop-loss-larger claims 
yield larger ruin probabilities.53 It is a straightforward consequence of the stop-
loss order for risks when the expectations are constant that the variance and 
standard deviation premium principles yield increasing premiums.54 Moreover, 
the exponential premium principle (and, in general, the zero utility premium) 
results in a premium increasing with respect to the stop-loss order of risk.55 As 
a particular case of it the Bayes premium with respect to the LINEX loss56 can 
be seen.
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* * *

Porządki stochastyczne w aspekcie bayesowskim

Streszczenie
Praca stanowi przegląd problematyki porządków stochastycznych w aspekcie 

bayesowskim, to znaczy stochastycznego uporządkowania rozkładów a posteriori, 
brzegowych rozkładów obserwacji i rozkładów predyktywnych przy założeniach 
porządkowych dla rozkładów obserwacji i rozkładów a priori. Podano komentarze 
na temat znaczenia dla teorii ryzyka i zastosowań aktuarialnych.

Słowa kluczowe: zwykły porządek stochastyczny, porządek dyspersyjny, porządek 
ilorazowy, porządek rosnący wypukły (stop-loss), rozkłady ważone, rozkłady a priori, 
rozkłady a posteriori, rozkłady predyktywne, teoria ryzyka


