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Summary

The paper presents an application of an integral operator generated by the dis-
crete time risk process to determining the exact formulae for ruin probabilities. The
methodology is based on finding a fixed point of the operator and verifying whether it
is identically equal to the probability of ruin. The exact ruin probabilities are derived
for an absolutely continuous as well as for a discrete amount distribution of claims.
Numerical examples are also given.
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1. Introduction

Each insurer should examine its financial situation and report on it to its
supervisor. The reports are usually sent at the end of each fixed time period.
Thus, the discrete time setup seems to be relevant in the area of real-life appli-
cations.? The importance of the discrete time models might increase if one uses
them as internal models according to the forthcoming EU directive Solvency II.

I Institute of Mathematics, Technical University of £.6dz, Wélczanska 215, 90-924, £.6dz,
Poland, e-mail: marcin.rudz@p.lodz.pl or marcin_rudz@interia.pl.

2 Cf. H. Jasiulewicz, Dyskretny proces ryzyka z uwzglednieniem reasekuracji i losowej
stopy procentowej [ Discrete risk process with reinsurance and random interest rate], ,Roczniki
Kolegium Analiz Ekonomicznych”, Warsaw School of Economics, Warsaw 2013, vol. 31,
pp- 11-26; S. Cheng, H.U. Gerber, E.S.W. Shiu, Discounted probabilities and ruin theory
in the compound binomial model, “Insurance: Mathematics and Economics” 2000, vol. 26,
pp. 239-250; L. Gajek, M. Rudz, Sharp approximations of ruin probabilities in the discrete
time models, “Scandinavian Actuarial Journal” 2013, pp. 352-382.
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Many approximations of ruin probabilities have been proposed.? To investi-
gate the accuracy of an approximation, it is necessary to know the exact values
of ruin probabilities. They provide a good benchmark for numerical studies.
The problem of the exact ruin probabilities was investigated in continuous time
models.* However, the actuarial literature related to this problem in the discrete
time case is rather scarce.

2. A discrete time risk model

All stochastic objects considered in the paper are assumed to be defined on
a probability space (Q, 3, P).Let N denote the set of all positive integers and
R, the real line. Set N° = N u{0}, R = (0, o), Rf =[0, o), and R = (0, o].

In this paper, we investigate the following discrete time risk model. Let
a non-negative random variable X, denote the aggregated sum of the claims
in the i th time period; a positive real y, the amount of aggregated premiums
received each period; and a non-negative real u, the insurer’s surplus at 0 . We
assume that X,, X,, ... arei.i.d. random variables with a common distribution
function F. Let {S(n)} _ . denote the insurer’s surplus process defined by

3 To list only a few recent monographs and papers: S. Asmussen, H. Albrecher, Ruin pro-
babilities, 2" ed., World Scientific, Singapore 2010; P. Cizek, W. Hardle, R. Weron, Statistical
tools for finance and insurance, Springer-Verlag, Berlin Heidelberg 2005; J. Grandell, Simple
approximations of ruin probabilities, “Insurance: Mathematics and Economics” 2000, vol. 26,
pp. 157-173; T. Rolski, H. Schmidli, V. Schmidt, J. Teugels, Stochastic processes for insurance
and finance, Wiley, New York 1999.

4 To list only a few recent monographs and papers: B. Chan, H.U. Gerber, E.S.W. Shiu,
Discussion of papers already published — “On a classical risk model with a constant divi-
dend barrier” by X. Zhou, “North American Actuarial Journal” 2006, vol. 10, 2, pp. 133-139;
J.M.A. Garcia, Explicit solutions for survival probabilities in the classical risk model, “ASTIN
Bulletin” 2005, vol. 35, 1, pp. 113-130; S.A. Klugman, H.H. Panjer, G.E. Willmot, Loss mod-
els. From data to decisions, Wiley, New York 1998; N.L. Bowers, H.U. Gerber, J.C. Hickmann,
D.A. Jones, C.J. Nesbitt, Actuarial Mathematics, 2" ed., The Society of Actuaries, Schaum-
burg, IL 1997; J. Babier, B. Chan, Approximations to ruin probability by di-atomic or di-expo-
nential claims, “ASTIN Bulletin” 1992, vol. 22, 2, pp. 235-246; B. Chan, Ruin probability for
translated combination of exponential claims, “ASTIN Bulletin” 1990, vol. 20, pp. 113-114;
F. Dufresne, H.U. Gerber, The probability and severity of ruin for combinations of exponential
claim amount distributions and their translations, “Insurance: Mathematics and Economics”
1988, vol. 7, pp. 75-80; F. Dufresne, H.U. Gerber, Three methods to calculate the probability
of ruin, “ASTIN Bulletin” 1989, vol. 19, pp. 71-90; E. Dufresne, H.U. Gerber, Rational ruin
problems — a note for the teacher, “Insurance: Mathematics and Economics” 1991, vol. 10,
pp. 21-29.
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SO0)=u

and

S(n)=u+}/n—2Xi, neN.

i=1

The above model can be found e.g. in the papers by Rolski et al.,> Klugman
et al.,® Gajek’ or Gajek and Rudz® among many others.

Throughout the paper we will use the convention that inf & means . Then
the moment of ruin is defined by

T=T(u)=inf{neN: S(n)<0}

and the infinite horizon probability of ruin by

Y(u)=P(t(u) < o).

Fix y eR_. Let M: R— R be defined by

M(r)= Eeir(yfx‘), reR.

The positive real solution 7, of the following equation

M(r) =1,

if it exists, is called adjustment coefficient. Write

RO(M):e_rour MZO
and
Moz{reR: M(r)<oo}.

The following result provides a sufficient condition for the existence of 7.

5 T Rolski et al., op.cit.

6 S.A. Klugman et al., op.cit.

7 L. Gajek, On the deficit distribution when ruin occurs-discrete time model, “Insurance:
Mathematics and Economics” 2005, vol. 36, pp. 13-24.

8 L. Gajek, M. Rudz, op.cit.
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Lemma 1.° Assume that EX <7y, P(X1 >7¥)>0 and the set M, is open. Then
there exists a unique adjustment coefficient 7, >0 .
Under the assumptions of Lemma 1, one can show that

_ R (u)
E[R(S(D)|r <]’

Y(u) )

which implies the following Cramér-Lundberg bound.!®

W(u)< R (u)

Formula (1) leads to an applicable representation of ruin probabilities ¥
only in some special cases of F, including exponential and the two-point distri-
butions. The next section concerns a more constructive method of calculating W.

3. An operator-like approach

In this section we summarise!! the relevant material on an integral operator
generated by the risk process.

We will denote by R the set of all non-increasing functions defined on R!
and taking values in [0, 1]. Fix yeR_and F. A function L: R — R is said
to be the integral operator generated by the risk process {5(71)}’nE wo if

u+y

Lp(u) = J.p(u+y—x)dF(x)+1—F(u+}/), peR, )

0

where the integral is considered over the interval [0, u+7¥]. Gajek'? proved,
among other things, that the probability of ruin ¥ is a fixed point of L, i.e.

Y(u)=LY¥Y(u), u=0. (3)

9 L. Gajek, op.cit., p. 15.

10 N.L. Bowers et al., op.cit.

11 After L. Gajek, op.cit. and L. Gajek, M. Rudz, op.cit.
12 1. Gajek, op.cit.
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Formula (3) suggests an idea of deriving the exact ruin probabilities V.
One can fix the claim distribution F in (2) and solve then the integral equation (3).
However, the operator L may have distinct fixed points.!* A question arises: is
the determined fixed point identically equal to ¥ ? The following proposition
gives an answer.

Proposition 1. Let the assumptions of Lemma 1 hold. Assume that a function

p €N is such that

p(u)= Lp(u) “)
and
p(u) < R () )

for every >0 . Then W(u)= p(u) , u=0.
Proof: L. Gajek, M. Rudz, op.cit. ]

Thus, solving the integral equation (4) and proving that its solution is not
greater than the Cramér-Lundberg bound, one may determine the explicit ruin
probabilities W. In the following section we will calculate!* the exact formulae
for ruin probabilities for some distributions of F. We consider a mixture of
exponential distributions and the geometric distribution.

4. Main results

In this section we determine some formulae for the exact ruin probabilities.
We apply the method described in Section 3. The first result concerns the case
when F is a mixture of exponential distributions. Set I(xeA)=1 if x€A
and 0, otherwise.

Theorem 1. Assume that X,’s density function is given by

f(x)= 21 ABe P 1(x>0),

13 For details see L. Gajek, op.cit.

14 After M. Rudz, Wzory doktadne i przyblizone na prawdopodobieristwo ruiny w modelu dys-
kretnym [Exact and approximate formulae for the probability of ruin in a discrete time model],
M.Sc. thesis, Technical University of £.6dz, Faculty of Physics, Applied Mathematics and Com-
puter Science, Institute of Mathematics, £.6dz 2007.
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where
n—1
n>1,0<p <B <..<B ., ZAizl
i=0
and
=l A
A >0 for ie{0, ., n—1} . y>Y L
=0 /;
then

i) the following equations

n-1
eir]{yzAi ﬂi :1 ’ ke{o) ceey n_l} (6)
i=0 ﬂi 1
have exactly »n real roots 7, ..., ¥, such that
O<ry<B,<n<f <..<r <B .,
ii) for every u>0
n-1
P(u)=Y Ce™, 7
k=0
where
n—1 7 n—-1 ﬁ -7
C = : Lkt kedO0, .., n—-1}. (8)
=0 hi =T Ji=0 ﬁi

Proof: i) The function M in considered case is given by

n-1
e’”ZAi —ﬁi , T<B,
i=0 ;T

ot n—1
M®@) = je”(y’x)z Aiﬁiefﬁ"x dx =
0 =0 oo, 1> ﬁ
» = Mo

Thus, the set M =(—c, B,) is open. Since the support of the considered claim
distribution is unbounded, the condition P(X > ¥)>0 holds as well. Therefore,
by Lemma 1, if

A
}/>EX1 =2—l

i=0 /;

then the adjustment coefficient r, exists with the understanding that r € (0, ﬂo).
Let us define a function M by
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B,
B—r

We see that lim M(r) = e and lim M(r) = —eo for i €{0, ..., n—1} and y < eo. The
r—p;

r—p;

n-1
M@r)=eY A , r=0, r#B, ie{0, .., n—1}.
i=0

function e””M() is continuous and increasing in the interior of each interval
(B, B), -, (B_,, B,_,). Thus, in each of them its graph intersects exactly one
time with the graph of the function € and there exists exactly one solution, say
r, jedl, ..., n—1}, of the following equation

M@r)=1. )

n-1

Summing up, under the assumption Y > z—i, Equation (9) has exactly n
i=0 /;

real roots 7, ..., 7, suchthat O<r <f <7 < <..<r <f .Asimilar ap-
proach for the continuous time model can be found e.g. in the works of Bowers
et al., Dufresne and Gerber and Otto.!>

ii) Write

n—1
pw)=YCe ™ u=0, (10)
k=0

where the coefficients C, are given by (8).

We are now in a position to show that p given by (10) and (8) is a fixed point of
the operator L. In order to prove this, we will use some computational techniques
presented in the continuous time case by Dufresne and Gerber!® and Chan.!”

Note that p e R and recall that M(Vk) =1 for keA{0, ..., n—1} . Therefore,

u+y

Lp(u) = j p(u+y—x)dF(x)+1- Fu+7y)

0

0

uty ( n-1 ( )n—l s n-1 5 )
_ —n (uty—x -Bx =B, (uty
= J E Ce E ABe "™ \dx+ E Ae
k=0 i=0 i=0

15 N.L. Bowers, op.cit.; F. Dufresne, H.U. Gerber, Three methods..., op.cit.; W. Otto, Ubez-
pieczenia majqtkowe. Czg$¢ I. Teoria ryzyka [Non-life insurance. Part I. Risk theory], Wydaw-
nictwa Naukowo-Techniczne, Warsaw 2004.

16 F. Dufresne, H.U. Gerber, Three methods..., op.cit.

17 B. Chan, op.cit.



314 Marcin Rudz

3
L
3
T

b

iﬁicke_"k(u‘*y) _ S‘i < Alﬁzck =B (uty) + ZA -B(uty)
i=0 k=0 ﬁi - i — 1 i=0

n-1 n-1 -1 n-1
= C oo Az_ﬂz _ Alﬁle By Ae B (ury)
k E E
k=0 i=0 ﬁi - rk Je= 1"

0 i=0

:Q

i=0 k=0

~
—_

0 ﬂ -
n-1 n-1 C
=pu)-Y, Aiefﬁ’(“”) AC, + ZA e P 0.
i=0 k=0 ﬁl 1 i=0

To prove (4), we have to show that

n-l n-1 C n—1
=B (ury) ﬁi k| =B (ury)
2 [Aie ] - Z Aie .

i=0 k=0 ﬁi 1 i=0

This will be proved by comparing the coefficients corresponding to the terms
Aie_ﬁ’(uw) for i €40, ..., n—1} . It suffices to show that C,, ..., C_ given by (8)
are solutions of the following equations

n-1

C, 'BL =1,ie{0, .., n—1}. an

k=0

We proceed in the same manner as Chan.!® Let us consider the following equality

n-1 n—1
forc‘:l Hrﬂ(( _ﬁ; XET, ied0, ..., n—-1} (12)
i=0 i i=0

of the two rational functions of degree n taking the same values at n+1 points
(i.e. the value 0 at x=0 and, following (11), the value 1 at xe{g8,, ..., B _})
and having the same domain R\ {7, ..., 7 }.

Fix ke{0, ..., n—1} . Multiplying (12) by we get

i=0 X 7’; i=0 i=0 X~ 7;
i#k

n—1 _ n—1 _ n—1 n-1
it r")Ci+xC,<=x—n—[ xﬁﬂlj 1=
=0 )

i#k

Taking x =7, yields

18- B. Chan, op.cit.
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Since k€{0, ..., n—1} is arbitrary and 7, is positive, we conclude that (8)
holds as well.

Note that we have already proved that p given by (10) and (8) is a fixed point
of L. By Proposition 1, it remains to prove that (5) holds for every u >0 . Indeed,
since 7. > 17, for j € {, ..., n=1}, B_ —r.>0and C >0 for ke{0, .., n-1}, we
have

plu) = ZCe_rk <R(u)2c R(u)ZC( = rk]

ﬁn—l T’}{
— < ﬁn—l _ 1’}(
_Ro(u) Ck[ﬂ — —Vk]

k=0 n-1 k ﬁn 1
n-1 ﬁ
=R (u) C
’ [ko kﬁnl rk 2 ‘ nl cJ
n-1
:Ro(u)[l— Ckﬁ k_r ]SRO(M), u>0.
k=0 n-1 k

By Proposition 1,

Y(u)=pu), u=0,

which completes the proof. ]

We will now consider the geometric distribution under the assumptions that
Y, ueN.
Theorem 2. Assume that X, s probability function is given by

P(X, =n)=q""'p, neN,

where pe(0, 1) and g=1-p. If a positive integer y satisfies the inequality

Y > 1 then

p Yu)=e """ ueN,
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1
where 7, €(0, In—) is the adjustment coefficient.

Proof: The function M in the considered case is given by

oo

M(r) = i(e—r(y—n)qn—lp) _ e—rypi ertnhgnt e—ryperZ(qer)
n=l =1

n-1

n=1
e pe , r<lnl
_ 1-ge q
oo, ¥ 2In—.
q

1

Thus, the set M =(~e°, In—) is open. Since the support of the considered claim
q

distribution is unbounded, the condition P(X1 >¥) >0 holds as well. Therefore,

1
by Lemma 1, if y > EX, =— then the adjustment coefficient 7, exists with the

understanding that 7, € (0, lnl).
Set 9

’

pw)=e""" L, eN. (13)

We will prove that p given by (13) is a fixed point of the operator L.
Note that p e R and recall that M(ro) =1. Therefore,

u+ty u+y

Lp(w)=Y plu+y-n)P(X,=n)+1-Flu+y)=, e T gl g gt

n=0 n=1
uty n-1 [ U+
_ _ - - e 4
—e rO(LH—}’)e ro}’perox(eroq) + qu+y —e rO(LH—}’)e T p—y(l_ (qero) )+ quﬂf
=l 1—ge®
=7 = p(u), ueN.

Since y >0, we have p(u)= e < R (1), ue N. By Proposition 1,

W(u)=p(u), ueN,

which completes the proof.
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5. Numerical examples

On account of Lemma 1, we assume that y > EX, . In practically-oriented
problems y =(1+6)EX,, where 6>0 is the relative security loading."

Since the exact ruin probabilities ¥ were derived in Section 4, numerical
computations are possible as well. We will present now the results of a simu-
lation study. The computations were carried out by the author. The bisection
method was used.

Example 1. Let us consider a mixture of five exponential distributions with
scale parameters (B, B, B,, B,, B,)=(2, 4, 5, 6, 8) and weights (A, A, A,,
A, A)=(02, 0.2, 0.2, 0.2, 0.2) respectively. Set ¥y =0.275>0.248 = EX . It
means that the relative security loading 6 = 0.11.

nuin probability

irigil Sirphes

Figure 1. The exact probability of ruin ¥(u), u €[0, 10.4) for a mixture of five
exponential distributions with scale parameters (8,, B,, B,, B,, B,) =
=(2,4,5, 6, 8) and weights (4,, A, A,, A,, A)=(0.2,0.2,0.2,0.2,0.2)
respectively and the relative security loading 68 = 0.11

Source: own computations.

19 Cf. N.L. Bowers et al., op.cit.
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Figure 1 illustrates the exact probability of ruin ¥(u), u€[0, 10.4) com-
puted numerically applying Formulae (6)-(8). Since 6 is relatively small, the
probability of ruin is relatively high, especially for u <2y, i.e. for the values of
u that are usually important in real-life situations.

The following example concerns the impact of 6 on V.

Example 2. Let us consider a mixture of five exponential distributions with
scale parameters (B,, B, B,, B,, B,)=(2, 4, 5, 6, 8) and weights (4,, A, A,
A, A4) =(0.2, 0.1, 0.1, 0.2, 0.4) respectively. Set y=0.3>0.228 = EX . It
means that the relative security loading 8 = 0.31.

The graph of ¥ is presented in Figure 2. In Figure 3 the same probability of
ruin is compared together with the one corresponding to ¥ = 0.35 (i.e. 8 =0.53).
We see that an increase in the amount of premiums reduces the probability of
ruin. Obviously, the level of 6 should not be too high. Otherwise, potential po-
licyholders may not be interested in taking out an insurance policy.

Figure 2. The exact probability of ruin ¥(u), u €[0, 5) for a mixture of five exponential
distributions with scale parameters (8,, B,, B,, B,, B,)=(2,4,5, 6, 8),
weights (A, 4, 4,, 4,, A))=(0.2, 0.1, 0.1, 0.2, 0.4) respectively and the
relative security loading 6 ~ 0.31

Source: own computations.
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mim probability

Figure 3. A mixture of five exponential distributions with scale parameters
(B, B, B,, B,, B,)=(2,4,5, 6, 8) and weights
(4, A, A, A, A)=(0.2, 0.1, 0.1, 0.2, 0.4) respectively. The exact

ruin probabilities corresponding to 8 = 0.31 (the solid line) and
6 = 0.53 (the dashed line)

Source: own computations.

6. Conclusion

In this paper we investigated a method of determining the exact formulae
for ruin probabilities in the discrete time framework. The method involves the
integral operator L, defined by (2), which has a fixed point at the probability
of ruin W(u) . We conclude that the operator-like approach leads to an effective
way of finding W(u). In particular, we derived it for mixtures of exponential
distributions and the geometric amount distribution of claims.

A knowledge of the exact ruin probabilities enables one to investigate the
accuracies of ¥ 's approximations. The problem might find an application also
on account of the forthcoming EU directive Solvency II.
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Sk sk

Metoda wyznaczania dokladnych prawdopodobienstw
ruiny w modelach dyskretnych

Streszczenie

W niniejszej pracy zaprezentowano zastosowanie operatora calkowego generowa-
nego przez proces ryzyka z czasem dyskretnym do wyznaczania doktadnych wzoréw
na prawdopodobienstwo ruiny. Metodologia jest oparta na znajdowaniu punktu statego
operatora i weryfikowaniu, czy jest on tozsamo$ciowo réwny prawdopodobienstwu
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ruiny. Doktadne wzory sa wyprowadzone zaréwno dla absolutnie ciggtego, jak i dla
dyskretnego rozktadu wysokosci szkdd. Podane sa réwniez przyktady numeryczne.

Stowa kluczowe: modele ryzyka z czasem dyskretnym, prawdopodobiefnistwo
ruiny, operator calkowy generowany przez proces ryzyka, teoria punktéw statych,
Solvency 11 (Wyptacalnosé II)



