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Summary
In the paper the deterministic version of the procedure based on hidden Markov 

models for the analysis of economic cycles is described. The quality of fitting hidden 
Markov models as well as the accuracy of the identification of turning points in the 
business cycle in Poland depends, among other things, on the number of states of the 
model and the size of panel data. Determinism however affects significantly on a time 
of computations. Speed up of computations could be achieved by adding the paralle‑
lism into the procedure. The usefulness of this approach is verified by the numerical 
experiments and comparative tests measuring a time of computations depending on 
the number of processor cores.

Keywords: hidden Markov model, parallel computing, computational complexity, 
Baum–Welch algorithm, business cycle turning points

1. �Introduction

Various tools were developed for modeling the current and future economic 
situation. One of the primary sources of knowledge are business cycles. There 
are many computationally complex econometric models using both modern and 
established in theory and practice approaches from the border of mathematics 
and computer science. Due to the relatively big amount of data, potential pre‑
sence of unspecified variables in created models or simply restrictive assumptions 
about the model and input data prognostic properties are very limited. Based 
on non‑deterministic character and weak assumptions in many fields Markov 
models could be a better alternative.



76 ﻿  Michał Bernardelli

The procedure based on hidden Markov models for the analysis of economic 
cycles was developed by Bernardelli and Dędys1. The quality of fitting hidden 
Markov models as well as the accuracy of the identification of turning points in 
the business cycle in Poland depends, among other things, on the number of states 
of the model and the size of panel data, see Bernardelli2. The proposed proce‑
dure uses Monte Carlo simulations and an iterative Expectation‑Maximization 
method, therefore it has non‑deterministic background. In order to achieve a rea
sonable approximation of the optimal solution a large number of simulations 
is required. Main purpose of the article is to present the deterministic version 
of that procedure. Determinism affects significantly on a time of computations. 
To solve this problem the parallel version of the procedure was implemented. 
Furthermore, the usefulness of this approach is verified by the numerical expe‑
riments and comparative tests measuring a time of computations depending on 
the number of processor cores.

The paper is composed of five sections. The short description of hidden 
Markov models with the particular emphasis on panel input data is in section 2. 
Section 3 presents the description of data and the steps of the deterministic 
procedure. In section 4 there are results from numerical experiments exploring 
parallelism of the procedure. The paper ends with the summary in section 5.

2. �Hidden Markov models for panel data

Hidden Markov models (HMM) are widely used in analysis of processes and 
patterns in many fields, such as speech, handwriting or gesture recognition3, 
bioinformatics4, cryptanalysis or econometrics5. One of many definitions of hidden 
Markov chains uses the terminology from the field of finite‑state probabilistic 

1  M. Bernardelli, M. Dędys, Ukryte modele Markowa w analizie wyników testu koniunk‑
tury gospodarczej, in: Badanie koniunktury – zwierciadło gospodarki, p. 1, “Prace i Materiały” 
IRG SGH, no. 90, Warszawa 2012, pp. 159–181.

2  M. Bernardelli, Non‑classical Markov models in the analysis of business cycles in Poland, 
„Roczniki” Kolegium Analiz Ekonomicznych SGH, z. 30, Oficyna Wydawnicza SGH, War‑
szawa 2013, pp. 59–74.

3  F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, Cambridge 1997.
4  R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis: Probabilistic 

Models of Proteins and Nucleic Acids, Cambridge University Press, Cambridge 1998.
5  O. Cappé, E. Moulines, T. Rydén, Inference in Hidden Markov Models, Springer, New 

York 2005.
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automaton6. To define a hidden Markov chain a set of the following parameters 
is necessary:

a finite set of •	 k states SX with specified an initial state S1,
a transition matrix •	 k

jijipP 1,, ][ == , where Pi,j is the probability of transition from 
the state i to the state j. It is assumed, that transition matrix is stochastic, 
that is for every i

.1
1

, =å
=

k

j
jip

an alphabet •	 Σ of symbols which are emitted in the specific state with the 
given probability distribution. We assume that in every state some symbol is 
emitted. For the finite alphabet the HMM in the state i ∈ Sx the symbol x ∈ Σ 
is emitted with the probability ei(x), and next it changes the state to j with the 
probability pi,j. In the case of continuous probabilities by ei(x) a probability 
distribution is meant.
Observable are only symbols emitted by the model, but the current state of the 

hidden Markov chain remains unobservable. An alphabet Σ could be infinite and 
in this case the probability ei is often given by the normal probability distribution 
defined by the expected value μ and the standard deviation σ. To generalize the 
normal distribution to more than one dimension is is enough to assume that ei 
is given by a multivariate normal distribution. For independent normally distri‑
buted n random variables

ei ~ N(μ,σ2Ι),

where μ = [μ1,μ2,...,μn]T is a vector of expected values and σ = [σ1,σ2,...,σn]T vector of 
standard deviations of each normally distributed random variables, whereas I is 
an identity matrix of degree n. Cases n > 1 could be treated as a panel input data 
of hidden Markov model. A schema of a three‑state hidden Markov model with 
normal probability distributions of emitting symbols is presented in Figure 1.

6  M.O. Rabin, Probabilistic Automata, “Information and Control” 1963, vol. 6(3), pp. 230–
245.
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Figure 1. �A schema of a three‑state hidden Markov model with pair of normal 
probability distributions of emitting symbols

Source: own calculations.

3. �Description of the data and the procedure

The source of the data is the business tendency survey conducted monthly 
by the Research Institute for Economic Development in Warsaw School of 
Economics. There are questions about current and future situation in Poland 
(due to a respondent’s knowledge and prediction). The survey consists of eight 
questions:

Question 1 – level of production,•	
Question 2 – level of orders,•	
Question 3 – level of export orders,•	
Question 4 – stocks of finished goods,•	
Question 5 – prices of goods produced,•	
Question 6 – level of employment,•	
Question 7 – financial standing,•	
Question 8 – general economy situation.•	
For the calculations data from the March 1997 to February 2014 were taken. Input 

data were restricted to answers to the questions about current situation in the coun‑
try, because models based on respondent’s predictions turns out to be less accurate7.

7  M. Bernardelli, M. Dędys, op.cit.
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The procedure takes on input the data from the survey and returns the path 
of states that has the highest probability in the whole considered period. Because 
of the numerical stability8 and ease of interpretation computation were restricted 
to models with two, three and four states. In the case of a two states the interpre‑
tation is straightforward: the zero state is associated with periods determined by 
the respondents as worse in limiting to the considered question, while the state 
denote by one is related to the situation assessed as better. In three‑state model 
there is an additional state ½ symbolizing the transient situation between states 0 
and 1. It is a state designed for situations uncertain and difficult to unambigu‑
ous classification. Analogously the space of states of four‑state hidden Markov 
chain has the form {0, ⅓, ⅔, 1}. State 0 indicates strong economic downturn, 
state 1 indisputable economic recovery, while the state ⅓ should be interpreted 
as indicating the uncertain status of a worse economic situation in the country 
and the state ⅔ suggests rather better economic conditions.

It is also assumed that in economy changes take place gradually. The re‑
flection of this assumption is the structure of the transition matrix. Non‑zero 
probabilities are permitted only between the adjacent states. For models with 
three and four states transitions matrices have forms respectively
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The procedure of business cycle turning points identification based on hidden 
Markov models can be described in the following steps:
1)	 decompose the input time series (using STL procedure9),
2)	 choose initial points, that are the starting values of the parameters of the 

hidden Markov chain,
3)	 for each point from the step 2 use the Baum–Welch algorithm10 to estimate 

parameters of the hidden Markov model,

8  M. Bernardelli, Nieklasyczne modele Markowa – problemy numeryczne, praca badawczo
‑rozwojowa, SGH, 2012.

9  R.B. Cleveland, W.S. Cleveland, J.E. McRae, I. Terpenning, STL: A Seasonal‑Trend Decom‑
position Procedure Based on Loess,„Journal of Official Statistics” 1990, vol. 6, pp. 3–73.

10  L.E. Baum, T. Petrie, G. Soules, N. Weiss, A maximization technique occurring in the 
statistical analysis of probabilistic functions of Markov chains, „Ann. Math. Statist.” 1970, 
vol. 41, no. 1, pp. 164–171.
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4)	 assign to groups parameters of all calculated models on the basis of rounded 
to one decimal place expected values of conditional distributions; for each 
group define a representative model with parameters being averages of the 
respective parameters of models from this particular group,

5)	 for representative models from each group calculate the most probable path 
of a hidden Markov chain using the Viterbi algorithm11,

6)	 based on selected optimization criteria or/and comparison with the reference 
time series choose the best HMM model.
A more detailed description of the procedure is presented in the article of 

Bernardelli12. An example of the output data from the procedure is shown in 
Figure 2.

Figure 2. �Viterbi paths of two‑state, three‑state and four‑state hidden Markov model 
for the question about stocks of finished goods (from March 1997 to February 
2014)

Source: own calculations.

Random or deterministic character of the procedure depends on the selec‑
tion method of the initial points to the Baum–Welch algorithm (second step). 

11  A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding 
algorithm, „IEEE Transactions on Information Theory” 1967, vol. 13, issue 2.

12  M. Bernardelli, Kryteria optymalizacyjne w procedurze wykorzystującej ukryte modele 
Markowa do analiz danych ekonomicznych, in: Rola informatyki w naukach ekonomicznych 
i społecznych. Innowacje i implikacje interdyscyplinarne, ed. Z. Zieliński, vol. 2, Wydawnic‑
two Wyższej Szkoły Handlowej, Kielce 2013, pp. 43–53.
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The Baum–Welch algorithm is an iterative method that maximizes the expected 
value with respect to the likelihood function. Due to the way of finding the ma‑
ximum, obtained solutions may be far from optimal. There is no guarantee that 
found by the algorithm local maximum is actually a global maximum. Therefore 
choosing the right initial parameters is crucial. To increase the chance of finding 
better approximation of the real solution, the algorithm is used repeatedly for 
the same input data, but different initial parameters. If  the initial points are 
generated in the random (on the computer rather pseudo‑random) way, then 
each use of the Baum–Welch algorithm is in fact the Monte Carlo simulation. 
Such version of a procedure was used and described by Bernardelli, Dędys13 
and Bernardelli14. Main purpose of the article is to present the deterministic 
version of the procedure.

Let describe in more detail the initial parameters for the Baum–Welch algo‑
rithm. We denote by k number of state and by n number of independent normally 
distributed input time series that is the size of panel data.

Initial probabilities for each of k states. Each of them is a value from the •	
interval [0,1], with the restriction, that sum of them must be equal to 1. 
By default in the procedure all probabilities are equal to 1/k.
The transition matrix P, see (1) with zero probabilities of transition between •	
non‑adjacent states. Only 4 + 3(k – 2) non‑zero elements of the matrix need to 
be specify. By default in the procedure probabilities are set as follows
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Parameters (•	 μ, σ) of a normal distribution defining probability of emission of 
symbol in each state. There are 2kn parameters that determine final values 
of model parameters. In the procedure these initial values are chosen from 
the following intervals: an expected value [ ]3,3 ,,,,, jljljljlji σμσμμ +-Î  and 
a standard deviation [ ] ,3,5.0 ,,, jljlji σσσ Î  where jlμ ,  and jlσ ,  are empirical 
parameters calculated for every state (i=1,2,...,k) and each of input time se‑
ries (j=1,2,...,n). Of course intervals could be wider, but according to three 
sigma rule for the normal distribution in high probability they cover the vast 
majority of possible values.

13  M. Bernardelli, M. Dędys, op.cit.
14  M. Bernardelli, Non‑classical Markov..., op.cit.
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In the non‑deterministic version of the procedure all values of μi,j and σi,j are 
randomized with a uniform distribution from the specified intervals. To change 
the procedure into deterministic one those intervals have to be discretized. Let 
μ

jim ,  and σ
jim ,  be numbers of nodes in the interval for respectively an expected value 

and a standard deviation of the j‑th input time series of the i‑th state. Number 
of all nodes M in the discretization grid is defined by the formula

	 ∏∏
= =

=
k

i

n

j
jiji mmM

1 1
,,
sm

.	 (3)

Mesh nodes may be distributed uniformly, but it is not always the best possi‑
ble choice. Certainly, the greater value M, the finer grid and the better chance 
of finding a closer approximation of the exact solution. Assuming that for all 
i = 1, 2, ..., k and j = 1, 2, ..., n values σ

ji
μ

ji mmm ,, ==  number of nodes

	 knmM 2= .	 (4)

For different numbers of states k and values of m, numbers of nodes M for 
single input time series are given in Table 1, and for input data consists of a pair 
of time series in Table 2.

Table 1. �Number of nodes for different sizes of discretization grid and different 
numbers of states in hidden Markov chain for a single question

M k = 2 k = 3 k = 4

2 16 64 256

5 625 15 625 390 625

10 10 000 1 000 000 100 000 000

20 160 000 64 000 000 25 600 000 000

50 6 250 000 15 625 000 000 39 062 500 000 000

100 100 000 000 1 000 000 000 000 10 000 000 000 000 000

Source: own calculations.
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Table 2. �Number of nodes for different sizes of discretization grid and different 
numbers of states in hidden Markov chain for a pair of questions

m k = 2 k = 3 k = 4

2 256 4 096 65 536

5 390 625 244 140 625 152 587 890 625

10 100 000 000 1 000 000 000 10 000 000 000 000 000

20 25 600 000 000 4 096 000 000 000 000 655 360 000 000 000 000 000

50 3,91E+13 2,44E+20 1,53E+27

100 1,00E+16 1,00E+24 1,00E+32

Source: own calculations.

Due to the high dimension of the grid, number of nodes is increasing expo‑
nentially with increasing number of states as well as with increasing size of panel 
data. The computation time is proportional to the number of nodes. Assuming 
that we have access to a supercomputer that can calculate one million of models 
in a second, a computation time for k = 4, n = 2 and m = 100 would take over 
3×1018 years, while the age of the universe is estimated for not more than 14×109 
years. Therefore to get the result in a reasonable time the grid used in the proce‑
dure must by rather thick. Even then a time of calculations is essential. It should 
be emphasized that many methods are extremely susceptible to parallelization 
including those used in economy and finance like Monte Carlo simulations15, 
Markov models16, Bayesian averaging17, option pricing18 and others19.

In modern computers parallel computing20 is available in the form of har‑
dware (multiple cores or/and processors) and software (threads, processes, 
automatic or semi‑automatic parallelization). Nowadays those possibilities are 
not reserved for supercomputers or computer clusters, but accessible in every 

15  P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer‑Verlag, New 
York 2003.

16 Hidden Markov Models in Finance, eds R.S. Mamon, R.J. Elliott, Springer International 
Series in Operations Research & Management Science 2007, vol. 104.

17  M. Próchniak, B. Witkowski, Time Stability of the Beta Convergence among EU Countries: 
Bayesian Model Averaging Perspective, “Economic Modeling” 2013, vol. 30, pp. 322–333.

18  Y. Peng, B. Gong, H. Liu, Y. Zhang, Parallel Computing for Option Pricing Based on the 
Backward Stochastic Differential Equation, High Performance Computing and Applications, 
Lecture Notes in Computer Science, Springer, Berlin–Heidelberg 2010, vol. 5938, pp. 325–
330.

19  Ł. Goczek, Przegląd i ocena ekonometrycznych metod używanych w modelach empirycz‑
nych wzrostu gospodarczego, “Gospodarka Narodowa” 2012, t. 10, pp. 49–73.

20  A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing (2nd Edition), 
Addison‑Wesley, Reading, MA 2003.
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personal computer. The procedure was implemented in R using the library pa‑
rallel. To check susceptibility of the procedure for the parallelization numerical 
experiments were performed. The specification of the experiments and their 
results are described in the next section.

4. �Numerical experiments

In the numerical experiments all questions as well as all combinations of 
pairs of questions from the survey were examine. There were considered hidden 
Markov chains with two, three and four states and different numbers of nodes 
of the grid. All of those computations were repeated on the same five‑core com‑
puter with the use of cores from one to five. The total time of computations was 
measured to calculate speedup, that is

	 ,)( 1

ct
tcS = 	 (5)

where c is the number of processors or cores in the processor and tc is the exe‑
cution time of the procedure with c processors (or cores of processor).

Results of computations on one core versus five cores are presented in 
Table 3. Speedups depending on numbers of cores used in the computations 
are depicted in Figure 3.

Table 3. �Comparison of speedup on five cores for different sizes of discretization 
grid M, numbers of states k in hidden Markov chain and size of input panel 
data n

M k = 2
n = 1

k = 3
n = 1

k = 4
n = 1

k = 2
n = 2

k = 3
n = 2

k = 4
n = 2

10 1.618 1.840 2.061 1.951 2.052 2.173

20 1.782 1.923 2.123 2.012 2.380 2.263

50 2.033 2.231 2.403 2.487 2.491 2.320

100 2.864 2.652 2.417 2.751 2.688 2.625

500 3.194 2.797 2.476 2.963 2.853 2.834

1000 3.243 2.849 2.492 3.428 3.264 3.153

Source: own calculations.



85Parallel deterministic procedure based on hidden Markov models for the analysis...

Figure 3. �Speedups for two‑state model and single time series input data
Source: own calculations.

Speedup with increasing number of cores is significant, but not satisfactory 
especially for single time series input and small number of states. For smaller 
grids computations on multiple cores could be even slower then those perform 
on a one core. The cause lies in the need for handling the parallelization. What 
is more, multiple cores used on one machine, still have shared memory. With 
many short tasks advantage of multicore computational power is outweighed by 
limited access to the memory. That is why the speedup is greater for HMM with 
greater number of states and size of input panel data. It is worth to emphasize 
that for computers with distributed architecture, speedup is expected to be ideal, 
that is equal c for c processors.

5. �Conclusions

The implementation of the deterministic version of the procedure based on 
hidden Markov models may be used for the analysis of economic cycles. This 
implementation uses parallel capabilities of modern computers. In numerical 
experiments speedup related with the number of cores used in the computations 
was measured. It is justified to draw the following conclusions:
1.	 Both versions of the procedure: deterministic and non‑deterministic, have 

an excellent susceptibility for the parallelization.
2.	 For small number of nodes of the grid and simple models (small number of 

states, small size of input data) computations with smaller number of cores 
are faster, due to the time needed for handling the parallelization of the 
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computations and shared memory. For distributed computers and larger 
number of nodes speedup is almost proportional to the number of proces‑
sors.

3.	 Panel data on input of the procedure could improve the fit of the model but 
amount of time necessary for the computations increases exponentially with 
the number of states and the size of the panel data. Therefore full compu‑
tation of the deterministic version of the procedure is impossible even with 
the use of parallelization capabilities.

4.	 The deterministic version of the procedure is better for smaller grids. The 
non‑deterministic version is a better solution for the larger mesh size.
For improving the accuracy of the HMM fit, larger number of nodes is needed. 

The nodes could be and for large size of the grid have to be chosen in the random 
way. Especially in this case parallelization is very helpful. Numerical experiments 
provide evidence for the usefulness of parallelization and should be consider as 
an incentive to use in other methods in economy and finance.
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