
Roczniki Kolegium Analiz Ekonomicznych
Zeszyt 32/2013

Robert Kruszewski

The demand-supply model with expectations.
Complex economic dynamics

Abstract
We investigate the dynamics of the nonlinear demand-supply model with expectations.

We investigate the impact of expectations on the dynamics of the price. We determine the
equilibria and investigate their local asymptotic stability. The global behaviour of the mar-
ket is analysed numerically. We present the bifurcation diagrams for each parameter and
localize those values, for which the system indicates complex behaviour. We investigate
how the dynamics of the model depends on the parameters. We present analytical results
whenever it is possible and numerical simulations of the more interesting occurrences.

Keywords: perfect competition, expectations, equilibrium, bifurcation, determinis-
tic chaos.

1. Introduction

In economic modelling, many examples of cobweb chaos have been demon-
strated. Some of the them include (Brock, Hommes, 1997; Chiarella, 1988; Hom-
mes, 1991, 1994; Jensen, Urban, 1984; Nusse, Hommes, 1990); Hommes (1991)
applies the concept of adaptive expectations in a cobweb model with a single
producer to investigate the occurrence of strange and chaotic behavior, Hommes
(1994) and Jensen and Urban (1984) used linear demand functions with nonlin-
ear supply equations. These findings indicate that the nonlinear cobweb model
may explain various irregular fluctuations observed in real economic data. In this
paper, the cobweb model with nonlinear demand and piecewise linear supply
function will be investigated.

We determine the equilibria and investigate their local asymptotic stability.
Either simple or complex dynamics can occur around an equilibrium. In addition
to an asymptotically stable equilibrium, unstable fluctuations can occur. Viola-
tion of stability conditions lead to the flip bifurcation. The global behaviour of
the economy is analysed numerically. We present the bifurcation diagrams and
localize those values, for which the system indicates chaotic or complex behaviour.
We present analytical results whenever it is possible and numerical simulations
of the more interesting occurrences.
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2. The linear model

The standard linear demand-supply model is one of the simplest economic
models. The model describes the price behaviour in a single market. We write pt
for price, Qdt for the demands of goods and Qst for the supply for goods, all at
time t. The model is given by the following equations:

Qdt = α− βpt, α, β > 0, (1)

Qst = −γ + δpt−1, γ, δ > 0, (2)

∆pt = pt − pt−1 = j(Qdt −Qst ), j > 0. (3)

Standard market equilibrium condition about market clearance at every point
of time is replaced now by the adjustment mechanism given by the equation
(3). Substituting equations (1) and (2) into the equation (3) we get first-order
linear difference equation which describes dynamics of the price on the considered
market:

pt =
1

1 + jβ
(j(γ + α) + (1− jδ)pt−1) . (4)

Equation (4) has one fixed point (pt = pt−1 = p)

p =
α+ γ

β + δ

which is an equilibrium price for the linear model (Qdt (p) = Qst (p)). It is important
to specify the conditions which must be satisfied so that the equilibrium price
is stable. It is sufficient to determine the values of the parameters for which
the general solution of the homogeneous equation associated with (4) is always
converging to zero.

Proposition 1. Fixed point p =
α+ γ

β + δ
of the difference equation (4) is glob-

ally asymptotically stable iff 0 < δ < β + 2
j .

In the linear model where both the demand and supply functions are linear
only three types of price dynamics may occur. It is possible to observe: conver-
gence to an equilibrium price, convergence to a period two cycle or unbounded
exploding price oscillations. In reaction to this weakness of the linear model the
nonlinear model is proposed in the remainder of this paper.

The equilibrium price of the linear model, p is used in the next section and
plays a crucial role in the expectations formation. The simplicity of the linear
model makes it an excellent candidate for studying the effect of expectations on
the price dynamics and stability of the equilibrium price.
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3. Expectations

Households are bounded rationally due to non-sufficient information and com-
putational power to derive fully optimal decisions. As a substitute they use simple
heuristics which have proven to be useful in the past. I assume that the households
use a mix of extrapolative and reverting expectation formation rules to forecast
national income. The main objective of this paper is to examine the impact of the
expectations on the dynamics of the price. The main modification of the linear
demand-supply model is that household’s demand depends on the expected price.

The aggregate expectation about price in period t are formed at the end
of period t − 1 as a weighted average of extrapolative (E1t−1[Yt]) and reverting
(E2t−1[Yt]) expectations. Expectations are formed with reference to the fixed point
of (4) which is a long-run equilibrium for price in the linear model, denoted in
what follows as

p =
α+ γ

β + δ
.

Extrapolative (trend following) expectations are formalized as:

E1t−1[pt] = pt−1 + µ1 (pt−1 − p) , µ1 > 0.

Equilibrium reverting expectations are described as:

E2t−1[pt] = pt−1 + µ2 (p− pt−1) , 0 < µ2 < 1.

It is assumed that larger deviations of the price decrease the weight put on
extrapolative expectations. Households believe that extreme economic conditions
are not sustainable. Formally, a rule describing weight put on extrapolative ex-
pectations becomes:

wt =
1

1 +
(
ω pt−1−p

p

)2 , ω > 0

The equation describing the expectations of the price in period t becomes:

Et−1[pt] = wtE
1
t−1[pt] + (1− wt)E2t−1[pt], 0 < wt ¬ 1.

4. The demand-supply model with expectations

4.1. Equilibrium. Local stability

The proposed model of perfectly competitive market includes two new as-
sumptions on the demand side. Demand depends on the expected price level
Et−1[pt] in the current period. The second assumption made in the proposed
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model is the introduction of the upper limit on the volume of supply, which is
related to the maximum level of production that can be realized by entrepreneurs.
Production capacity in the short term, may not be sufficient to meet the demand
reported. The standard equilibrium assumption, like in the linear model, is re-
placed by a market mechanism that governs the price. The proposed nonlinear
model of the market is described by the equations:

Qdt = α− βEt−1[pt], α, β > 0, (5)

Qst = min{−γ + δpt−1, r}, γ, δ, r > 0, (6)

∆pt = pt − pt−1 = j(Qdt −Qst ), j > 0. (7)

Substituting equations (5) and (6) into the equation (7) we get first-order non-
linear difference equation which describes dynamics of the price on the considered
market:

pt = pt−1 + j (α− βEt−1[pt]−min{−γ + δpt−1, r}) (8)

which depends on nine positive real parameters:
α, β, γ, δ, j, r, ω, µ1, µ2 (µ2 < 1).

Above equation is a nonlinear difference equation which cannot be solved
analytically. Qualitative methods will be used to investigate properties of this
model.

Let F : R+ → R+ denote the right hand side of the equation (8):

F (pt−1) = pt−1 + j (α− βEt−1[pt]−min{−γ + δpt−1, r}) . (9)

It is worth mentioning that the expected price depends on pt−1 and the right
hand side of (9) is well defined. The map F is given by two maps Fi (i = 1, 2)
defined respectively, in two regions Ri of the phase space:

F1(pt−1) = j(α+ γ) + (1− jδ)pt−1 − jβEt−1[pt],

R1 =
{
pt−1 ∈ R+ : pt−1 ¬

r + γ

δ

}
,

F2(pt−1) = j(α− r) + pt−1 − jβEt−1[pt],

R2 =
{
pt−1 ∈ R+ : pt−1 >

r + γ

δ

}
.

The equation (8) is nonlinear and at the beginning of the analysis equilibria for
this system will be determined. Equilibria, sometimes called critical points, are
fixed points of the map F , to find all of them it is necessary to find all fixed
points of the maps Fi. Fixed points of the map Fi satisfy the following equation:

pt−1 = pt = p = const. (10)
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For the map F1 equation (10) is equivalent to the equation:

(p− p)
[
1 +

β

δ + β
(w(µ1 + µ2)− µ2)

]
= 0,

w =
p2

p2 + ω2(p− p)2
,

which has only one solution p = p because equation

µ2 − 1 = w(µ1 + µ2) +
δ

β
(11)

has no solution. Left hand side of (11) is negative (µ2 < 1) and right hand side
is positive. For the map F2 equation (10) is equivalent to the equation:

1
(p− p)

[
α− r
β
− p

]
+ µ2 = w(µ1 + µ2)

which has only one solution p∗ > p (fig. 1).

Proposition 2. Difference equation (8) has one fixed point p =
α+ γ

β + δ
for

pt−1 ¬
r + γ

δ
and one fixed point p∗ > p for pt−1 >

r+γ
δ .

In this section we consider fixed points and conditions for which the local
asymptotic stability of fixed points is lost. We begin the stability analysis by
deriving the first order derivative of the map F (the Jacobian matrix), which is
given by the following formula:

dF [pt−1]
dpt−1

=

 1− jδ − jβ dEt−1[pt]dpt−1
for pt−1 ¬ r+γ

δ ,

1− jβ dEt−1[pt]dpt−1
for pt−1 >

r+γ
δ ,

(12)

where

dEt−1[pt]
dpt−1

=
(µ1 + µ2)

1 +
(
ω pt−1−p

p

)2
1−

2ω
(
pt−1−p

p

)2
1 +

(
ω pt−1−p

p

)2
+ 1− µ2.

If the absolute value of the derivative (12) evaluated at the equilibrium is
strictly less than one then the equilibrium of one-dimensional dynamical system
is locally asymptotically stable. It was shown that the fixed point of the linear
model is also an equilibrium for the modified model. At this equilibrium the trend
followers are predicting perfectly (wt = 1) and the derivative (12) calculated at
that equilibrium p, simplifies to:

dF

dpt−1
[p] = 1− jδ − jβ(1 + µ1).
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Proposition 3. Fixed point p =
α+ γ

β + δ
of the difference equation (8) is locally

asymptotically stable iff

0 < δ <
2
j
− β(1 + µ1).

Second fixed point p∗ of difference equation (8) will be analysed numerically
because there is no analytical formula for this equilibrium. It was shown only
that such equilibrium exists.

4.2. Global dynamics and bifurcations

One fundamental characteristics of a complex dynamical system is the possi-
bility of order and chaos, which can exist either separately or simultaneously. In
an ordered dynamical system, for arbitrary initial conditions, after going through
a transient period the system approaches a periodic behaviour with a predictable
periodicity. Chaotic dynamical system exhibits behaviour that depends sensitively
on the initial conditions, and long-term prediction is impossible. One characteris-
tic of chaotic motion is sensitivity to initial conditions. Its measure is the largest
Lapunov exponent, which is the expotential rate of divergence of nearby orbits
in phase space. Theoretically, the Lapunov exponent is negative for systems with
stable fixed points or stable cycles and positive for chaos.

Before discussing loss of stability and bifurcations, we need to recapitulate
some elementary notions in bifurcation theory necessary in the remainder of this
paper. The term bifurcation describes a quantitative change in the orbit structure
of a dynamical system, as one or more of the parameters on which it depends is
changed slightly. The bifurcation of a fixed point of the map F occurring when
its eigenvalue (its derivative evaluated at the fixed point) passes through minus
one, the fixed point loses its stability and a stable period-2 cycle is born, this is
called a flip bifurcation.

Numerical simulations of the dynamics of the price are provided on bifurca-
tion diagrams. The one dimensional (single parameter) bifurcation diagram for
parameter j is presented in figure 1 and the Lapunov exponent over the same
interval is presented in figure 2. The parameter j is a reaction parameter, how
strongly the market mechanism responds to the imbalance between demand and
supply. Both figures suggest that there are three basic types of long-run dynamics.
For small values of the parameter j the price is converging to the unique stable
stationary equilibrium. At j ' 0.47 this equilibrium loses its stability through
a flip bifurcation and a period-2 stable cycle appears. Then through a cascade of
flip bifurcations the model becomes chaotic. When the bifurcation parameter j
is increased beyond 0.91 then reversed flip bifurcation can be observed and the
dynamics of the model is again periodic.
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Figure 1. j – bifurcation diagram

Figure 2. Lapunov exponent

Figure 3 and figure 4 show the long-run dynamics of a model as a multi-
-function of the parameters α and β respectively which describe the demand side
of the market. The α parameter shifts the demand curve. For the low values
of this exogenous variable there is a stable period-2 cycle. When α ∈ (4.9, 5.3)
then the model is chaotic. If the bifurcation parameter is increased above 5.3
then reversed flip (or period halving) bifurcation is observed. Price behaviour is
periodic. Periodicity is a decreasing function of the α parameter and finally the
price is converging to the stable equilibrium where demand equals supply.
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Figure 3. α – bifurcation diagram

Figure 4. β – bifurcation diagram

Exogenous variable β is a reaction parameter i.e, how strongly the demand
responds to the expected price. Figure 4 shows the long run dynamics of the
price. For low values of β the market is in equilibrium, demand equals supply.
For β ' 1.6 stationary equilibrium becomes unstable as a result of flip bifurcation
and a stable period-2 cycle is born. When bifurcation parameter β is increased,
at β ' 1.75 the model becomes chaotic and leaves the chaotic zone at β ' 2.03.
For β & 2.03 the long-term dynamics are periodic. It is worth mentioning that
the amplitude of the periodic attractors is an increasing function of the reaction
parameter β.



The demand-supply model with expectations... 139

Figure 5 and figure 6 show the long-run dynamics of the model as a multi-
-function of the parameters γ and δ respectively which describe the supply side
of the market. The γ parameter shifts the supply curve. For low values of this
exogenous variable the fixed point of the model is asymptotically stable (figure 5).
When γ ∈ (1.37, 2, 18) then the model is chaotic. The chaotic zone is divided by
windows of periodic dynamics. If the bifurcation parameter is increased above
2.18 the model leaves the chaotic zone and long-run behaviour of the price is
periodic, there is a stable period-2 cycle.

Figure 5. γ – bifurcation diagram

Figure 6. δ – bifurcation diagram

Figure 6 shows the dynamics of the model in relation to the δ parameter
which is the slope of supply curve, and suggest the following bifurcation scenario.
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If δ is small then there exists a stable period-2 cycle. If δ is increased, then
this cycle becomes unstable and flip bifurcations occurs. After infinitely many
flip bifurcations the price behaviour becomes chaotic, as δ is increased. A stable
period-3 orbit occurs for a small interval of δ, and again the price dynamics
become chaotic. When δ is further increased after a cascade of period halving
bifurcations there exists stable stationary equilibrium.

4.3. Conclusions

Let us recapitulate the main results of our investigations so far. The proposed
nonlinear demand-supply model with expectations has one fixed point (equilib-
rium). The equilibrium of the linear model is also an equilibrium for the nonlinear
model. With the nonlinear model, local stability of a fixed point may be lost
while global stability continues in the form of convergence to periodic or chaotic
attractors. Introducing expectations into the linear demand-supply model enor-
mously increases the potential complexity of its dynamics. Periodic and chaotic
behaviours occur in many possible combinations. The effect of variations of the
parameters on stability as well as on the degree of complexity of the dynamics of
the system need not be monotonic. Moreover, the proposed model provides sus-
tained and intricate fluctuations of the price which can be observed in economic
data.
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***

Dynamika modelu konkurencji doskonałej z oczekiwaniami
po stronie popytowej

Streszczenie
Głównym celem opracowania jest zbadanie wpływu prostego mechanizmu oczekiwań

na dynamikę modelu konkurencji doskonałej. Badany model jest nieliniowym układem
dynamicznym z czasem dyskretnym. Udowodnione zostanie twierdzenie o istnieniu rów-
nowag stacjonarnych. Podane zostaną warunki gwarantujące lokalną asymptotyczna sta-
bilność tychże równowag. W badanym modelu zachodzi bifurkacja podwajania okresu,
w wyniku której pojawiają się atraktory okresowe. Opisany zostanie wpływ zmiennych
egzogenicznych na dynamikę modelu.

Słowa kluczowe: konkurencja doskonała, oczekiwania, równowaga, bifurkacja, chaos
deterministyczny.
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